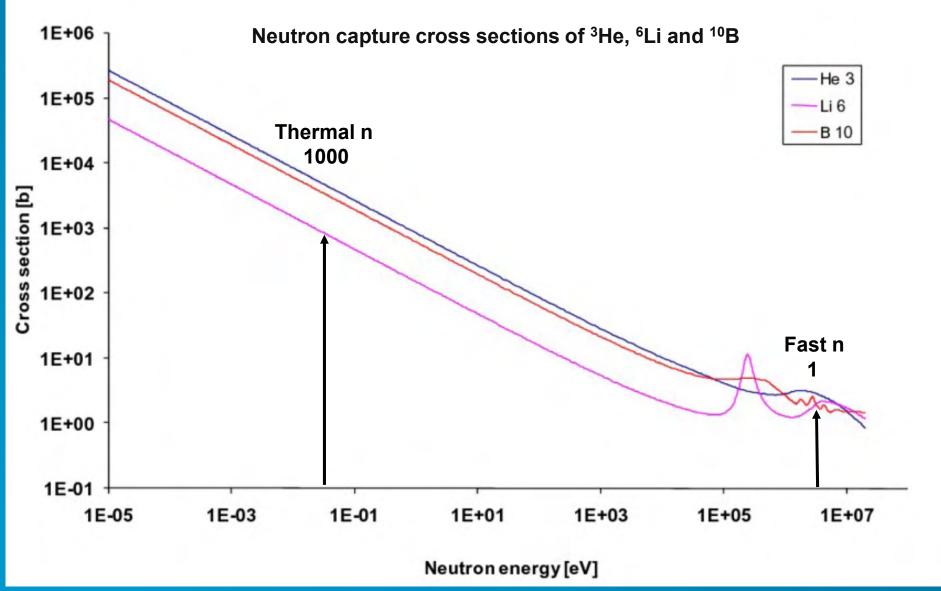
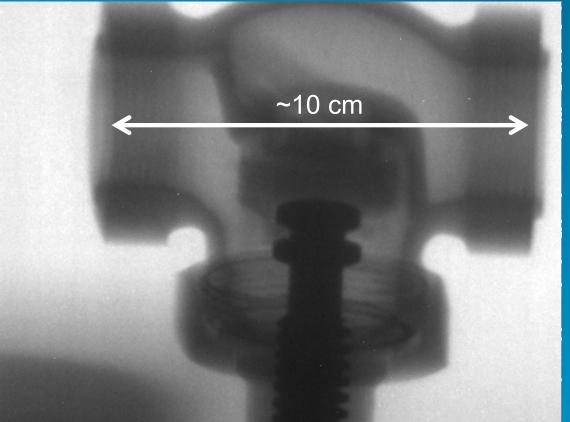


Alan Hewat, ILL and Neutron Optics Grenoble



Alan Hewat, ILL and Neutron Optics Grenoble

Fast Neutron imaging is IMPOSSIBLE...



Alan Hewat, ILL and Neutron Optics Grenoble

2015 - First experience with "fast neutron imaging"

- Florida Uni. purchased our 200x200mm camera for their 1 MW Triga Reactor
- A student also tried our camera on an Adelphi D-T generator (3x10⁹ n/s)
- He didn't know that fast neutron imaging was impossible
- He sent me the following astonishing image of a 100mm iron valve!

Unfortunately...

- This is an excellent image
- But with gammas, not neutrons!
- No image with a Pb filter
- CCD chip was soon destroyed

Alan Hewat, ILL and Neutron Optics Grenoble

Fast Neutron imaging is IMPOSSIBLE...

The impossible takes a little longer

Availability of high flux D-D and D-T fast neutron generators

- 10¹⁰ D-D n.sec⁻¹ Ted Cremer, Michael Taylor & Robert Adams presentations Tuesday morning
- 10⁷ thermalised D-D n.sec⁻¹ Moderated Adelphi DD110M thermal neutron generator (Note: we can do THERMAL neutron imaging with <10³ n.sec⁻¹.cm⁻²)

But the Efficiency of fast neutron scintillators is very low

- Hot neutrons cannot be captured thermalisation (moderators) in reactors, accelerator sources
- Otherwise use "knock-on protons" from hydrogenous Polypropylene PP/ZnS scintillators
- Low probability of proton creation, thick scintillators and low proton-photon yield from ZnS
- While thermal neutron scintillators produce ~160,000 photons for every neutron captured by ⁶Li!
- Bernhard Walfort presentation 13:30 today

Direct imaging with large flat panels would be interesting

- But Gamma radiation from generators can destroy electronic detectors
- So we try to use less efficient optically coupled CCDs that can be shielded

Can we optimise a CCD camera for fast neutrons?

A modern Sony 1" CCD can cover much of neutron imaging

CCD	PCO.edge gold 4.2	NOptics VS60	NOptics 11002	iKon L-936
Туре	Scientific sCMOS CIS2020	Sony Interline ICX694ALG	"Kodak" Interline KAI-11002	e2V Full Frame CCD42-40
Resolution pixel	2048 x 2048	2759 x 2200	4008 x 2672	2048x2048
Image diag. mm	18.8 (4/3")	16 (1")	43.3 (35mm)	38 (35mm)
Image area mm	13.3x13.3	12.53x9.99	37.25 x 25.70	27.6 x 27.6
Pixel size µm*	6.5 x 6.5	4.54 x 4.54	9.0 x 9.0	13.5 x 13.5
Quantum Effic*	>70%	75%	50%	90%
Fullwell e-**	~30,000	~30,000	~60,000	~100,000
Read noise e- **	1	6	13	12
Dark c. e-/pix/s	<0.02@-30°C	0.002@-10 °C	0.03@-20 °C	0.01@-50 °C
Peltier Cooling	Δ -30 °C	Δ -35 °C	Δ -38 °C	Δ -80 °C
Read time (s)***	0.01 to 0.02	1	12 to 22	2 to 10
A/D Readout**	16-bits	16-bits	16-bits	16-bits
Interface	USB 3.0	USB 2.0	USB 2.0	USB 2.0
Relative Cost	16	4	6	50

...for a more modest price - WCNR11 2018


Alan Hewat, ILL and Neutron Optics Grenoble

Is a large CCD an advantage? 35mm CCD + Nikon f/1.2 (2016)

Is a large CCD an advantage? Field-Of-View (FOV)

Efficiency ~ CCD/FOV area. But a large CCD implies large FOV

35mm CCD + Nikon 50mm f/1.2 – min. focal dist. 500mm – min. FOV 315mm Area CCD/FOV ~ 1.2%

12.5mm SONY + Fuji. 35mm f/1.4 – min. focal dist. 200mm – min. FOV 60mm Area CCD/FOV ~ 2.7%

So a smaller CCD can actually be more efficient for a small Field-of-View BECAUSE the lens can focus closer

Large CCDs need a large aperture lens with a short focussing distance Or a longer focal length, but 100mm lenses are at best f/2.8 (25% as bright)

Alan Hewat, ILL and Neutron Optics Grenoble

Is a large CCD an advantage? Field-Of-View (FOV)

Efficiency ~ CCD/FOV area. Reduce min. focus -> reduce FOV = increase effic

Also need a large Aperture (f-number)

f/1.0 is twice as bright as f/1.4

Old x-ray lenses 50mm f/0.7
De Oud Delft RAYXAR
Rodenstock HELIGON
Currently being tested

Current Nikon 50mm f/1.2

Minimum focal dist. 500mm

35mm minimum FOV 315mm

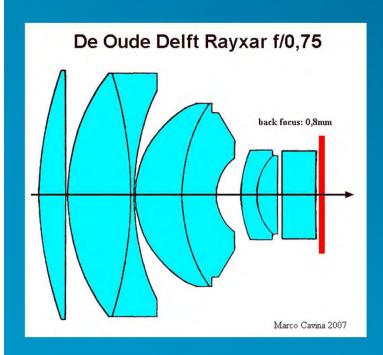
Area CCD/FOV ~ 1.2%

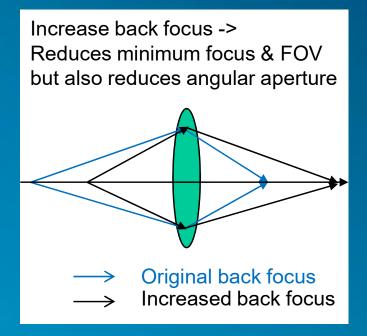
Works well with macro-spacers To reduce focal dist. to 250mm

Current Zeiss 25mm f/1.4

Min. focal dist. 252mm 35mm min. FOV 327mm Area CCD/FOV ~ 1.2%

Alan Hewat, MLZ Experts 23 Oct 2019


Alan Hewat, ILL and Neutron Optics Grenoble

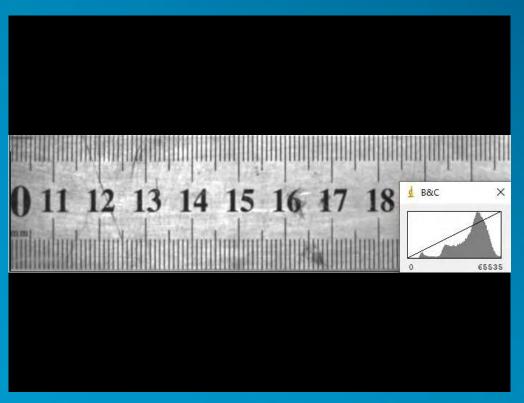

Is a large CCD an advantage? Field-Of-View (FOV)

Efficiency ~ CCD/FOV area. Reduce min. focus -> reduce FOV = increase effic

Macro-spacers increase back focus & reduce min. focus & FOV – but also reduce angular aperture

Old x-ray lenses 50mm f/0.7
-> f/1.4 ?
Currently being tested

Current Nikon 50mm f/1.2
-> f/1.4 ?
Works well
New Nikon f/0.95 cf Nikon f/1.2
Minimum focus is still 500mm
Cost x12 ... for gain x1.6


Alan Hewat, ILL and Neutron Optics Grenoble

Is a large CCD an advantage? Field-Of-View (FOV)

Efficiency ~ CCD/FOV area. Macro-spacers -> reduce FOV ≠ increase effic

Macro-spacers to increase back focus & reduce FOV – but also reduce angular aperture f/1.2 ->>

Nikon 50mm at ~500mm

Nikon 50mm at ~250mm

Use of macro-spacer reduces FOV but image brightness not increased because f/1.2 ->>

Alan Hewat, ILL and Neutron Optics Grenoble

A large CCD only advantage for large FOV (what other advantages?)

CCD	PCO.edge gold 4.2	NOptics VS60	NOptics 11002	iKon L-936
Туре	Scientific sCMOS CIS2020	Sony Interline ICX694ALG	"Kodak" Interline KAI-11002	e2V Full Frame CCD42-40
Resolution pixel	2048 x 2048	2759 x 2200	4008 x 2672	2048x2048
Image diag. mm	18.8 (4/3")	16 (1")	43.3 (35mm)	38 (35mm)
Image area mm	13.3x13.3	12.53x9.99	37.25 x 25.70	27.6 x 27.6
Pixel size µm*	6.5 x 6.5	4.54 x 4.54	9.0 x 9.0	13.5 x 13.5
Quantum Effic*	>70%	75%	50%	90%
Fullwell e-**	~30,000	~30,000	~60,000	~100,000
Read noise e- **	1	6	13	12
Dark c. e-/pix/s	<0.02@-30°C	0.002@-10 °C	0.03@-20 °C	0.01@-50 °C
Peltier Cooling	Δ -30 °C	Δ -35 °C	Δ -38 °C	Δ -80 °C
Read time (s)***	0.01 to 0.02	1	12 to 22	2 to 10
A/D Readout**	16-bits	16-bits	16-bits	16-bits
Interface	USB 3.0	USB 2.0	USB 2.0	USB 2.0
Relative Cost	16	4	6	50

Quantum efficiency, Well depth, Read noise, Dark current, Extreme cooling...?

Alan Hewat, ILL and Neutron Optics Grenoble

- ICON quantum efficiency of 90% compared to 75%
- +15% is no big advantage (except for astronomy)
- Is ICON greater well depth a big advantage?

Well depth = number of electrons stored / pixel (greater for larger e2v pixels)

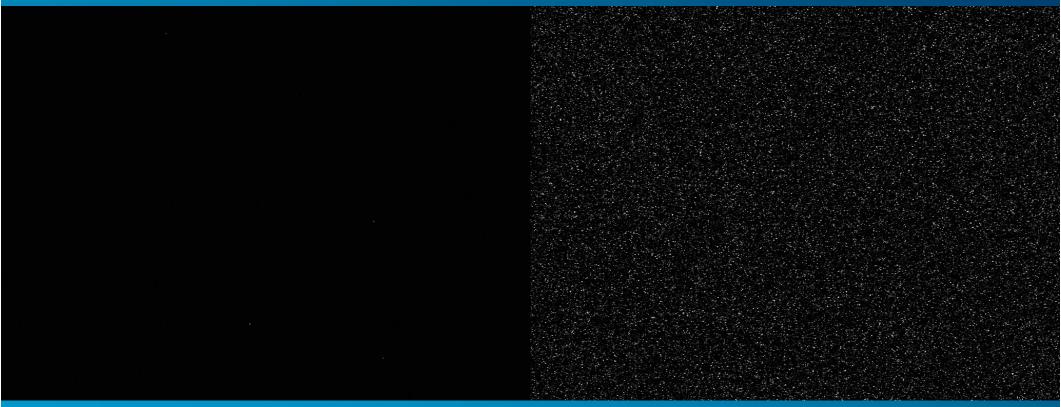
Dynamic range = Well Depth / Total Noise (but e2v chip noise is higher)

Well depth reduces electron overflow (e2V has no "anti-blooming" structure)

Importance of Well Depth exaggerated (cf well depth in sCMOS)

I wish we had enough fast neutrons to fill the well ©

- Is ICON extreme cooling -100°C a big advantage?
- In fact, the Sony CCD has lower dark noise at higher temperature The Sony camera also has lower read noise No need for extreme cooling
- ICON specs for ideal conditions. Hot neutrons are not ideal Extreme cooling doesn't help with radiation background noise



Alan Hewat, ILL and Neutron Optics Grenoble

N-generators eventually destroy CCDs – replacement cost?

Sony camera ~10% of ICON cost, easily repaired and less expensive to replace

a) New CCD, 3 hot pixels

b) CCD after use on fast neutron source "Noise" much greater than specifications

Can't be reduced by extreme cooling ©

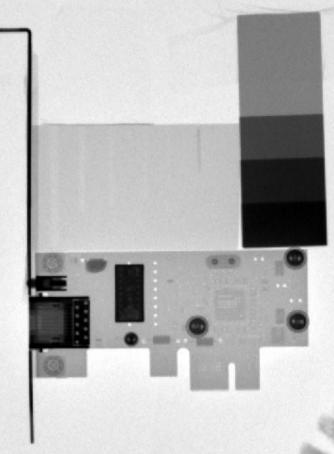
Alan Hewat, MLZ Experts 23 Oct 2019

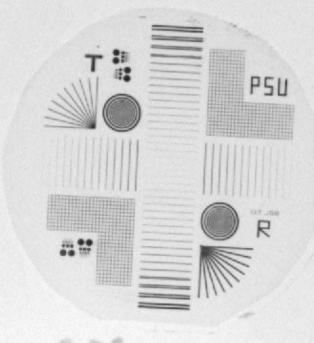
Alan Hewat, ILL and Neutron Optics Grenoble

A large CCD is only an advantage for a large FOV

- ICON is a good camera in an ideal environment, but expensive
- Can use cheaper 36x25mm CCDs (NOG-11002, PCO.4000)
- BUT a 1" CCD + 1" lens is at least as bright for a small FOV
- AND a lot less expensive to replace when damaged

EXAMPLE of 1" CCD camera efficiency and low noise

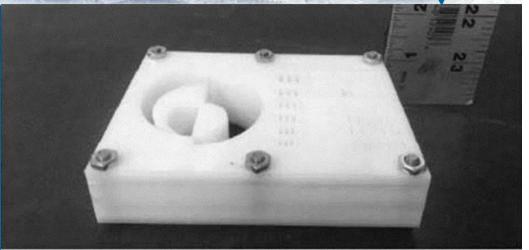

Robert Zboray at Penn. State University with low flux TRIGA reactor 250 x 200mm camera with THERMAL neutrons

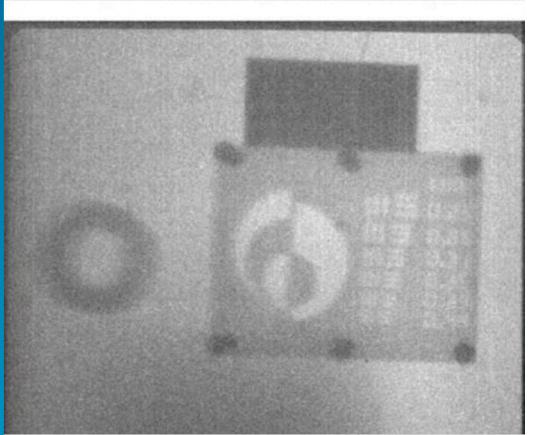

Alan Hewat, ILL and Neutron Optics Grenoble

100kW Triga reactor neutron image from our 1" CCD camera

1" Sony CCD efficiency Prof. Robert Zboray PSU

Alan Hewat, ILL and Neutron Optics Grenoble

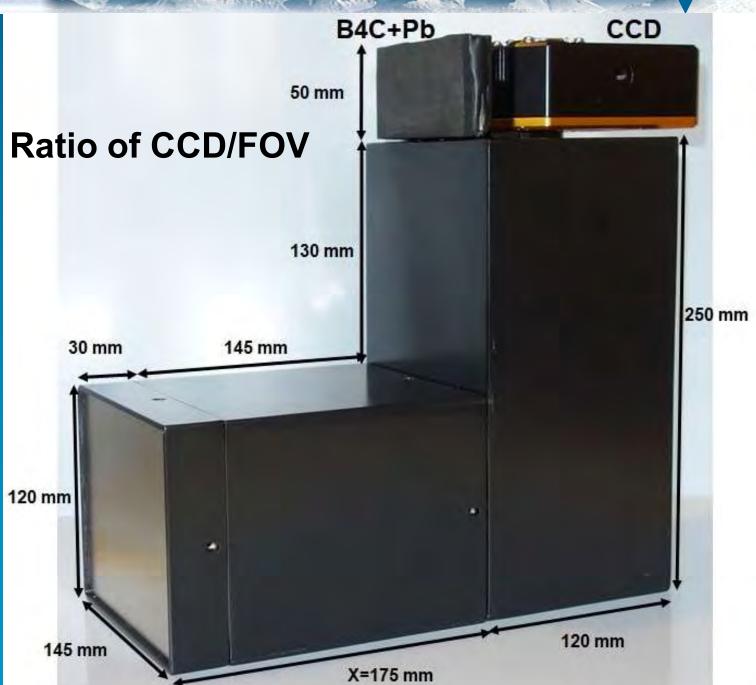



ADELPHI Fast Neutron image

- D.Williams, C. Brown, Ch. Gary, T. Kremer
- Our 200x200mm camera, PP scintillator
- Adelphi DT109-110 DT neutron generator
- 3x10⁹ n/s of 14 MeV neutrons
- 1" thick Delrin (-CH2O-)n block
- 25 mm Pb gamma filter
- 10 min exposure, 1.4m from 2mm aperture
- Largest lines 2 mm thick, 2mm spacing

Impossible takes a little longer

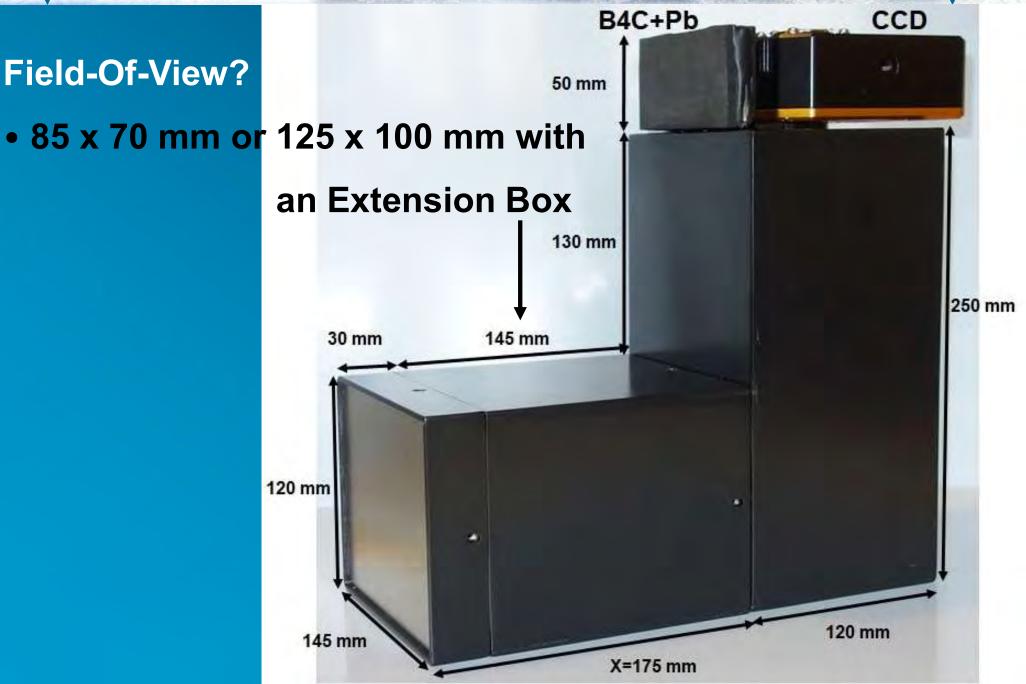
We can reduce exposure to ~2 minutes with a more compact camera


Alan Hewat, ILL and Neutron Optics Grenoble

Why Compact?

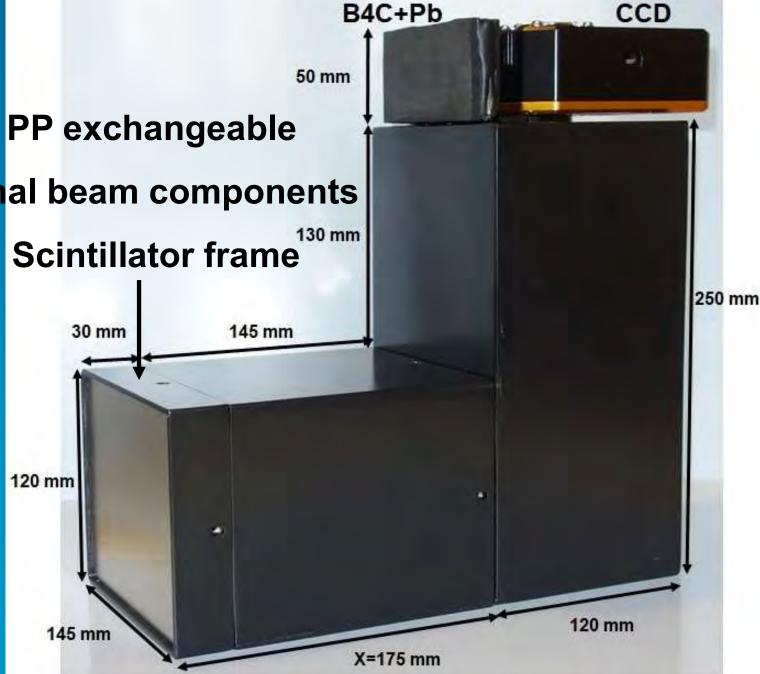
Efficiency ~

So x4 faster than our 250x200 mm camera But no magic solution



Alan Hewat, ILL and Neutron Optics Grenoble

Field-Of-View?

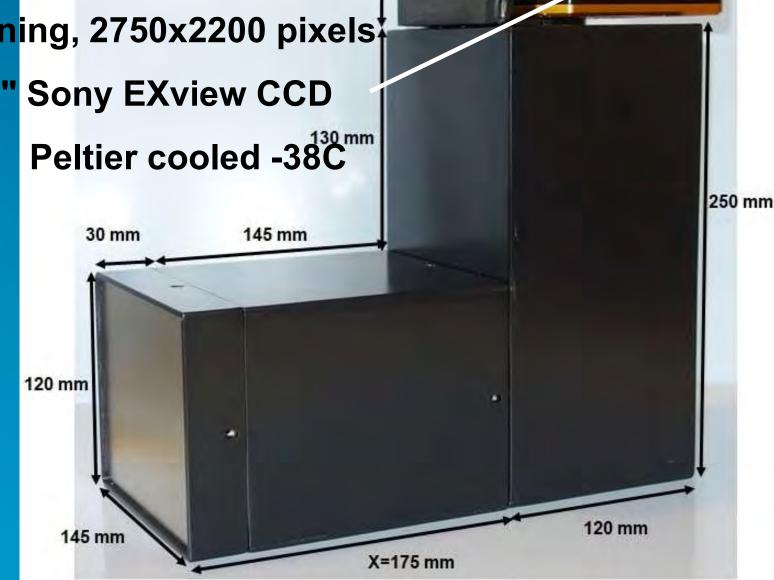

Alan Hewat, ILL and Neutron Optics Grenoble

Scintillator?

PSI/RC-TriTec PP exchangeable

X-ray or thermal beam components

Alan Hewat, ILL and Neutron Optics Grenoble



CCD

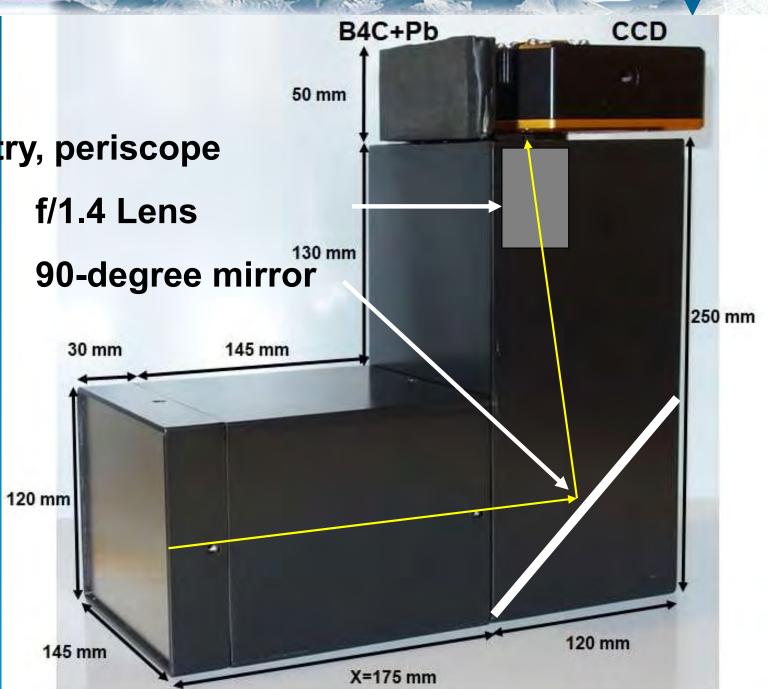
Cold Sony CCD

Up to 8x8 binning, 2750x2200 pixels

1" Sony EXview CCD

B4C+Pb

50 mm


Alan Hewat, ILL and Neutron Optics Grenoble

Shielding

Fixed Geometry, periscope

- Shielding
- Simplicity
- Repair cost

Alan Hewat, ILL and Neutron Optics Grenoble

A Small Problem...

PP/ZnS afterglow spots (ZnS clusters)

10 minute exposure after >1hr in darkness Also seen by PSI, but not noticed earlier

10 minute exposure after >1 day in darkness No spots seen in 600s exposure

Alan Hewat, ILL and Neutron Optics Grenoble

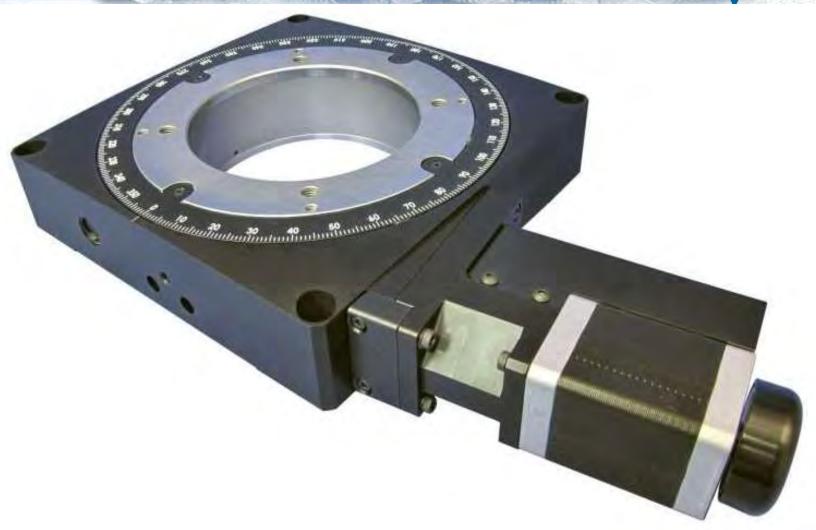
PP/ZnS afterglow spots (ZnS clusters)

1 hour exposure after >2 days in darkness Camera sensitivity can still see faint spots Amplifier glow at top with 1 hour exposure

Demonstrates high sensitivity and very low noise of Sony camera

New PP/ZnS scintillator 250x200mm

10 minute exposure after 8 hours in darkness



Alan Hewat, ILL and Neutron Optics Grenoble

Newport USA

Tomography
Mechanics
Made in France

Micro-Controle France Motorized 360° stepping stage, URS150 Aperture 90mm, 30kg load, 40°/s, ±0.35 mdeg, wobble ±12 µrad



Alan Hewat, ILL and Neutron Optics Grenoble

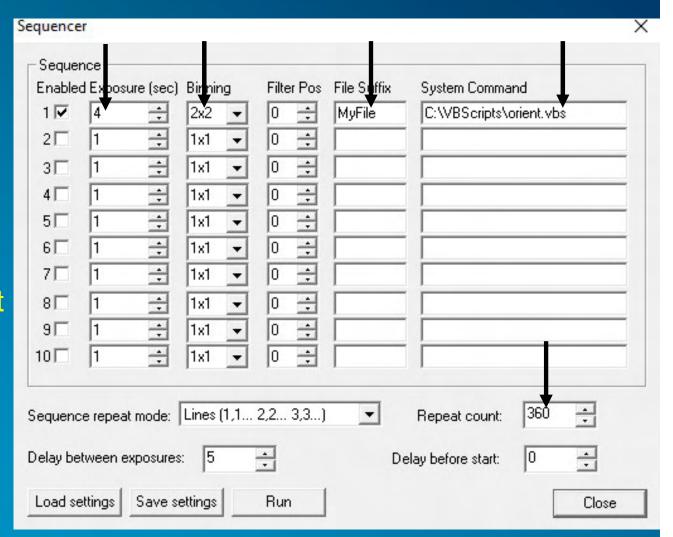
Micro-Controle France 360° stepping controller

USB connect to Windows, Control with *.BAT scripts Or remote manual control

C:\commands.bat | Plink -v -serial COM4 -sercfg 57600,8,n,1,N Port #4 Link Plink

This pipes the following Commands.bat script to execute stepping commands:

echo 1PR0.5 timeout /t 1 /nobreak >nul 2>&1 taskkill /f /IM Plink.exe exit Position motor #1 Relative 0.5° Timeout eventually in 1 second Kill port link Plink when finished SIMPLICITY



Camera Acquistion and Synchronisation software

- Expose 4 seconds
- Bin 2x2
- Readout to "MyFile"
- Execute stepping VBS script
- Repeat 360 times
- Execute another sequence

Alan Hewat, ILL and Neutron Optics Grenoble

Translation stages

Sample plate

Elevation stage

Manual alignment

Alan Hewat, ILL and Neutron Optics Grenoble

