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The design considerations for a conventional neutron powder 
diffractometer are reconsidered. We find that the resolution can 
be improved to the limits imposed by the powder particle size, 
while the effective intensity can at the same time be increased by 
using multiple counters with the correct combination of soller 

divergences, monochromator mosaic spread, and take-off 
angle. With the profile technique for data analysis, this high- 
resolution diffractometer should permit the refinement of nuclear 
and magnetic structures having unit cells of up to 3500 A 3 
volume. 

1. Introduction 

A neutron powder diffractometer is not required to 
separate all of the diffraction lines, since complex 
patterns containing many overlapping lines can be 
analysed with the profile-refinement technique1). 
Nevertheless, increased resolution will increase the 
amount of information in the profile and permit the 
solution of larger and more complicated structures2). 
The profile technique depends, though, on a precise 
knowledge of the line shape, and it is not permissable 
to obtain increased resolution at the expense of pre- 
cision or intensity. 

This makes it difficult to simply copy the focussing 
techniques used in X-ray cameras. The line profile for 
a conventional neutron powder diffractometer can be 
described as a very simple function of the scattering 
angle, because the diffractometer geometry is so simple: 
the sample is a cylinder of low absorption, the incident 
radiation is selected from a white beam by a mono- 
chromator having an effectively Gaussian mosaic 
spread, and the line shape, being a convolution of a 
number of nearly Gaussian distributions, approaches 
even more closely the ideal Gaussian shape. This can be 
compared to the focussing X-ray camera where the 
sample is an extended plate: even without the problems 
of absorption and cq, c~ 2 radiation components, this 
geometry makes for a more complicated line profile3). 

Neither can we accept a reduction in the line inten- 
\ 

sity. In fact we need an increase in intensity, since the 
higher resolution wil! permit the determination of 
larger crystal structures-for which the average Bragg 
intensity will go down with increasing cell volume. 

We propose then to retain the simple geometry of the 
conventional neutron powder diffractometer, and to 
calculate the ultimate resolution that can be obtained 
in a powder pattern. We will then show that the 

diffractometer can be designed to provide the intensity 
needed for the largest structures which can be examined 
with this improved resolution, i.e. unit cells of up to 
3500/~3 volume. This calls for an improvement over 
the best existing diffractometers by a factor of five in 
resolution and at least forty in effective intensity. 

2. Resolution and intensity requirements 

The resolution of a powder diffractometer is ulti- 
mately limited by the particle-size effect4), which 
produces a broadening 6 (2 0) of the full width at half 
height, A~, of the diffraction lines. This broadening is 
proportional to the ratio of the wavelength 2 to the 
effective particle size D: 

c5(20) = cosK ( D ) 0 "  (1) 

K ~  1 is a constant depending on the particle shape 
and the way in which D is defined. This equation 
is obtained simply by differentiating the length 
k = 2 2 - 1  sin 0 of the scattering vector with respect to 
0, and remembering the size in reciprocal space of the 
Bragg spot 6k'-~D-1. Of course, the effective particle 
size D is not equal to the size of the powder grains: 
there would then be no particle-size limitation, because 
the large size of the sample ( ~  10 cm 3) permits the use 
of relatively course powders. D is, instead, the size of 
the perfect crystallites which make up a mosaic crystal 
grain, or at least this mosaic model serves as a con- 
venient link between the particle-size effect and the 
primary extinction effect. 

The fraction aq of the amplitude scattered into the 
reflexion (h, k, l) per thickness & of a perfect crystallite 
is proportional to the scattering amplitude per unit 
volume Fhkl/Ve 5): 
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Fhk t is the structure factor, and vc the unit cell volume. 
The maximum value of Fhk~ occurs if all the atoms add 
in phase: then we can take the ratio of the average 
atomic scattering length b _ ~ 0 . 6 6 x 1 0 - 4 A  to the 
volume per atom Va >~ 10A 3 (e.g. solid deuterated 
CH3, having one of  the highest values of  Fhkt/vc). 
With 2 =  1.5 A and 0 = 3 0  ° we have: 

~q/~z < 2 x 10- 5 A. (3) 

This means that the amplitude of the incident beam 
is reduced by no more than 2% after passing through 
1000 A of perfect crystallite, even when the strongest 
possible reflexion is excited. For complex structures 
this thickness will be larger, because there is no  
reflexion for which all atoms add perfectly in phase. 

The fact that primary extinction in a mosaic crystal 
is often a larger effect than a 2% reduction in the 
amplitude of the strongest reflexion means that the 
perfect crystallites are usually larger than 1000 A. Even 
for powders, this conclusion is supported by X-ray 
measurements of  the particle siz&). 1000 A is, how- 
ever, the correct order of  magnitude, and eq. (1) with 
2 =  1.5 A and 0 =  30 ° then yields a particle-size broad- 
ening of 6 (2 0 )~  0.1 °. This seems to be about the limit 
of resolution that we can expect f rom a neutron powder 
diffractometer. 

It  is not, however, necessary to have such good 
resolution for all scattering angles. We must match the 
instrument resolution function to the required resolu- 
tion function if we are not to needlessly sacrifice 
intensity. To find the required resolution function we 
obtain the derivative O0/~p of the Bragg equation: 

2d sin 0 
= p~ (4) 

2 

with respect to p=hZ+k2+l 2 for a cubic cell of  
dimension d. Then the separation between adjacent 
peaks (Ap = 1) is: 

a (20) = 2A (0) = (5) 
sin 20 

This is symmetrical about the minimum of 20 = 90 ° 
(fig. 1). I f  we choose this minimum to be 0.1 °, then with 
a wavelength of 1.5 A we can just resolve adjacent 
lines for a cubic structure with d =  24 A 6). 

In practice we expect the maximum cell dimensions 
for which lower symmetry structures can be success- 
fully refined will be about  half this figure i.e. 15 A, 

or twice the dimensions of  the NH4 H 2 P O  4 cell which 
was refined on the P A N D A  diffractometer with a 
resolution of  0.5 ° 2). On doubling the cell dimensions, 
the number of reflexions is increased by a factor of 
eight, for which the improvement in resolution from 
0.5 ° to 0.1 ° will largely compensate. A 15 • cell limit, 
or a volume limit of  3500 A 3, will cover almost all of  
the problems of interest for powder refinement, as well 
as a large proportion of those which are at present 
studied with single-crystal neutron diffraction. 

Doubling the cell dimensions will also reduce the 
average line intensity by a factor of eight. Furthermore, 
as we shall see in section 5, improving the resolution 
from 0.5 ° to 0.1 ° results in a loss of a factor of 25 in the 
line intensity, or 5 in the peak height. The effective 
neutron flux for the high-resolution diffractometer will 
then have to be between 40 and 200 times that of the 
Harwell machine under similar conditions of  high 
resolution. This large factor can be achieved by the use 
of  multiple counters on the high-flux ILL reactor: 
the Harwell machine used for the N H 4 H z P O  ~ work 
had only one counter and about 10% of the reactor 
flux available at Grenoble. 

3. Monochromator take-off angle 

The full width at half height A~ for the powder 
peaks7): 

A~ = U tan 2 0 +  Vtan 0 +  W, (6) 

has a minimum at tan 0 = - V/2 U. The integrated line 
intensity L is also given here for reference. 

2 2 2 2 
U = 4(C~l~2q-Ctxfl +ct~fl2) (7a)  

tan 2 0~(e2 + ~2 + 4/71) ' 

V = - 4c~2z (~ 12 + 2flz) (7b) 
2 2 tan 0N (el + cq + 4/~2) ' 

2 2 . 2 2 2 2 2 2 2 
W : c t1°~2-b~ l~3+~2~3-} -4 f l  (~2"[-0~3) 

(o:2 + ~ + 4fl2) , (7c) 

(e2 + e22 + 4fl2) ~" (7d) 

Then the minimum in A~ occurs at: 

V 4c~22(~2 + 2/~ ) 
t a n 0  - = o ,  2 z _  2 , . 2 _  2,~2. t a n 0 M  

2 U  O I , 0 { l ~ 2 t 0 ~ l p  -~-CZ2/J ) 

-~ tan 0M (8) 

since (c~ 1 ~/~, e2) is required for the best resolution and 
intensity (section 5). This is the well-known parallel 
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focussing condition 0 = 0M, and is not strongly depen- 
dent on the choice of collimator divergences and mono- 
chromator mosaic spread. 

For a good match between the resolution function 
for the diffractometer [eq. (6)] and the resolution 
function required to separate adjacent peaks [eq. (5)], 
we must then choose the monochromator take-off 
angle 2 0M~ 90 °. This is considerably larger than that 
available on most existing powder diffractometers, but 
in practice it is a good idea to choose an even larger 
take-off angleS), since A~ increases more rapidly than 
does A (2 0) at high scattering angles. Fig. 1 shows how 
the matching to the required resolution function may be 
achieved with 20M "~ 120 ° 6). 

4. Focussing in reciprocal space 

It is useful to investigate the parallel focussing 
geometry in reciprocal space. The left-hand section of 
fig. 2 represents the reciprocal lattice for the mono- 
chromator, with the mosaic spread drawn as an arc 
around the origin. If we suppose that the direction of 
the incident beam IO is well defined by tight collim- 
ation ~1, then the monochromator selects a particular 
wavelength for each diffracted direction within a range 
of directions 2/?. For maximum intensity, the colli- 
mator ~2 between the monochromator and the sample 
should accept just this range of wavelengths and 

FWHM 

0"~ \ 

o.~ ~ 

0"1" 

O" 0 

I 
~ M  Rt,~ir~d (a46X) ~tr-ument ~ I (including v. dgce}~ i 

~ Ir~tr-ument Fk4HM 
(wilhoui" vert. dote) 

50* 160" I'50" 20 in degrees 

Fig. 1. Full  width at ha l f  height  for a h igh-resolut ion 
(~ = 0.1°/~/2) convent ional  powder  dilTractometer with 
c~1 = c~z=c¢, f l=2c~  and  ~ 2 = 2 f l .  These collimators,  cq, and  
m o n o c h r o m a t o r  mosaic  spread, t ,  have been chosen so tha t  the  
diffractometer resolut ion (solid line) matches  tha t  required to 
resolve adjacent  lines for an  hypothet ical  cubic crystal o f  lattice 
d imens ion  a = 2 4 A  (points), with m a x i m u m  line intensity. 

directions i.e. ~2 = 2/3. Larger values for ~2 simply 
increase the background, but smaller values can be 
used to limit the effective mosaic spread of the mono- 
chromator when maximum intensity is not required. 

The right-hand section of fig. 2 shows the reciprocal 
lattice for the powder sample, where the usual Bragg 
points have become spheres centred on the origin. The 
rays IM and JN from the monochromator have been 
redrawn as I 'M'  and J 'N '  incident on the sample. If 
the direction of the scattered neutrons entering the 
counter is also well defined by tight collimation ~3, 
then the Bragg equation can be satisfied for only a 
small arc which is an image of the mosaic spread of the 
collimator. When the counter direction is varied, this 
arc cuts through the Bragg sphere at a tangent. It is 
this tangetial interception of the Bragg sphere by the 
image of the monochromator mosaic spread that yields 
a sharp peak in the diffraction pattern as all of  the 
rays of different wavelength are simultaneously 
reflected. The width of this focussed peak depends on 
how precisely the directions of the incident and 
diffracted beams are defined: in fact, this peak will be 
just the convolution of the transmission functions for 
the collimators ~1 and ~3, and will not depend on ~2 
or/3. However, the line intensity will be a function of/3 
if ~2>~ 2/3, since it is proportional to the area of 
interception. Good intensity as well as good resolution 
will therefore be obtained if we choose ~2 = 2/3 >cq = 
~3. When 0#0M, the interception with the Bragg 
sphere is no longer tangential, and the peak width 
increases as we go away from the focussing geometry. 
Since the rate of increase will be proportional to /3, 
this defocussing effect means that/3 must be limited if 
good resolution is to be obtained for a range of scat- 
tering angles. 

I' 

N I ~ S  
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Fig. 2. Reciprocal  space focussing for parallel geometry  in which 
the coll imators ~t  and  ~z are parallel, i.e. the  counter  collects I 'S 
and  J ' T  parallel to IO incident  on the m o n o c h r o m a t o r .  Then  the 
Ewald sphere ST, which is an  image o f  the  arc M N  representing 
the m o n o c h r o m a t o r  mosaic  spread t ,  cuts t h rough  the powder  
diffraction sphere at a tangent .  The  line shape  is independent  o f  
fl and  c~2, being simply the convolut ion o f  the t r iangular  t rans-  

miss ion funct ions  for ~1 and  ~3 = ~1. 
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5. Collimator and monochromator combinations 

Having thus found the purpose of the different colli- 
mators, we can simplify eqs. (7) and obtain more precise 
information on the best combination of e l ,  ~2, a3, 
and ft. 

I f  c~ 2 = 2 f l > e  1 ~a3 ,  then: 

U ~- (2.5e~ +2fl  2) tan -2 0M, (9a) 

V -~ -- ( 2 ~  + 4/32) t an -  1 0M, (9b) 

W -~ 0.5~1 z + 2/32 + ~3 z, (9c) 

1 
L ~J2 °q ~2/3" (9d) 

We need only consider the scattering angles 0 = 0  °, 
OM and tan O/tan OM = 2 (2 0 ~-- 150 ° if 2 OM = 120°). 

0 = 0 °, A 2 ~- 0 .5a~+az+2f l  2, (lOa) 

0 = 0M,  = + 
2 2 
1 + ~2 + 4/3 2 

~- el z + a~, (105) 

tan 0 
= 2, A z - 6.5c~z+e~+2/3 z. (10c) 

tan 0M 

Eq. (10b) for focussing is true in more general 
circumstances, and represents the convolution of ~1 
and 0%. Eqs. (9a) and (10b) show that the best intensity 
and resolution are obtained with a~ = e3 = c~ say, and 
eq. (9d) also shows that the line intensity is propor- 
tional to /3, which is limited because eqs. (10a) and 
(10c) show that the half width rises to A~,J'2fl away 
from the focussing geometry. Eq. (10c) indicates that 
/3~2a  would be a good compromise, which with 
20M = 120 ° would result in a match between required 
and available resolution within the range of 2 0 up to 
150 ° (fig. 1). For the high-resolution diffractometer 
with e=0.1°/x/2, a value of f l = 2 e  corresponds with 
the mosaic spread that can be obtained with standard 
squashed germanium crystals. However, if e2 < 2/3, the 
effective mosaic spread is determined by a2, as can 
readily be checked by putting ez=X/3<e~Na3 ,  and 
obtaining the effective mosaic spread as 

[2 x i / ( x  2 + 4)p/3 

for example, halving e2 is equivalent to almost halving 
/3. It  would be useful then to choose a monochromator  
with /3>2c~ and to use c~ 2 to control the effective 
mosaic spread: this would make it possible to boost 
the line intensity, if required, for measurements near 
the focussing geometry. 

6. Sample size, vertical divergence, and effective 
intensity 

It  is usually most convenient to use a cylindrical 
sample, especially if the sample is to be rotated to 
reduce preferred orientation. A thick planar sample 
produces an undesirable increase with cos-1 0 of  the 
width of the diffracted beam, assuming a 0-2 0 scan is 
employed with the sample plane bisecting the incident 
and scattered rays; the neutron path length, and there- 
fore absorption, also increases with cos-  1 0. In either 
case, absorption correction errors limit the thickness of 
the specimen, and a 0.5 cm to 2.0 cm diameter is 
usual. The height of the specimen is limited by the beam 
size and the vertical divergence which can be tolerated, 
but the latter is not a serious problem since an addi- 
tional sSller collimator can be used to limit vertical 
divergence. In practice, the beam height is usually no 
more than 10 cm, and with 10 cm counters at a distance 
of 120 cm the vertical divergence would be 5 °. The use 
of the full height of the beam is doubly attractive, 
because then both the sample volume and the vertical 
divergence can be maximized: there is a fourfold 
increase in line intensity on doubling both the specimen 
and counter heights. 

The vertical divergence must ultimately be limited 
because of the broadening it produces in the line width 
for scattering angles other than 90 ° . This broadening 
arises because of the curvature of the projection on the 
counter plane of the Laue powder diffraction cones. 
The ends of the counter intercept these cones at a 
slightly different angle than does the centre, and the 
recorded lines are broadened and unsymmetrical for 
small and large scattering angles. Appropriate correc- 
tions 9'~) can be made for profile calculations, but this 
pseudo-defocussing effect cannot be allowed to become 
more important  than normal defocussing. 

The full width at half height of broadening due to a 
vertical divergence of 5¢ is, if (180-½6¢)>>20>>½6(o: 

6(20)~ = (¼6¢) 2 Icot 201 = 0.017 ° ]cot 201, 

if&b = 5 °, 

I t  is only for scattering angles smaller than 2 0 = 15 ° 
(cot 20 = 3.74) that the effect of a vertical divergence 
of 5 ° becomes important. In fact, if we are most inte- 
rested in the focussing region near 2 0 = 90 °, as is often 
the case for crystal structure work, we should use more 
extensive counters to increase the vertical divergence to 
10 ° or more if we wish to obtain maximum line inten- 
sity. 

The effective flux for a conventional powder 
diffractometer can also be increased by packing a large 
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number of counters and collimators in the equatorial 
plane. I f  the specimen is at most 2 cm wide, then with 
0.25 cm thick side walls, 2.5 cm wide collimators can 
be spaced at intervals of 2.5 ° with the front ends for- 
ming a circle of radius 60 cm from the sample: this 
allows another 60 cm for the length of the fine colli- 
mators needed for a high-resolution machine. Such 
collimators can be fabricated using the technique of 
stretched metal blades developed at Petten, or, perhaps 
more easily, using the novel technique of shrunk paper 
or thermo plastic blades developed at Ispra~°). 

An array of 32 collimators and counters, covering a 
20 arc of 80 ° , would probably be the practical max- 
imum if the ability to scan each counter over a large 
section of the diffraction pattern is to be retained. A 
large scanning range provides a large degree of overlap 
between the different counters and is useful for reducing 
intercounter calibration errors. Of  course, if the high- 
angle counters are to reach low scattering angles, it 
must be possible to swing the counter bank back 
through the direction of the incident beam. There is 
then a reduction in efficiency, from the maximum of 
32 times that for a single counter, since the low-angle 
counters do not collect useful data for part  of the time. 

7. Comparison with the PANDA diffractometer 

The comparison is best made with the original single 
counter P A N D A  machine, with vertical divergence of 
~ 5  ° on which the NH4H2PO4 data was collected2), 
although now the number of counters and the vertical 
divergence has been increased with corresponding 
gains in effective flux. The original machine had a 
variable take-off angle of  up to 2 0 u = 90 °, a squashed 
germanium monochromator  of mosaic spread fl=7' 
giving a wavelength of 1.54A from the (511) plane, 
~1 = ~3 = 30' and a2 -~ 30'. The beam size permitted 
the use of a sample of height 5 cm by 1.5 cm diameter. 
According to section 5, the mosaic spread of the mono- 
chromator  is far too small for this medium-resolution 
machine, but monochromators  with larger mosaic 
spread were not then available. 

The high-resolution machine would have 2 0M-~ 120 °, 
a squashed germanium monochromator  (533) plane 
giving 2 = 1 . 4 9 A  with fl= 10' to 20', ~1=~3=ct..~5' 
and a2=2fl=20' to 40'. The sample height would be 
10 cm and the vertical divergence at least 5 °. Because 
of the factor cos-2 0 in the expression for the integrated 
reflecting powerH), increasing the take-off angle from 
90 ° to 120 ° reduces the intensity by a factor of 0.67, and 
a further small reduction occurs because the Debye-  
Waller factor is larger for (533) than for (511). These 

losses are compensated by the increased length of the 
sample. The reduction in a l  =~3  from 30' to 5' 
produces the largest reduction, by a factor of 36, in 
integrated line intensity, but the overall loss factor is 
reduced to 25 when account is taken of the increase 
of fl f rom 7' to 10'. This factor of  25 in integrated 
intensity, or 5 in peak height, together with the further 
factor of  8 required when the crystal cell size is doubled 
to 15 A,, can be obtained with the use of 32 counters 
and the H F R  at Grenoble, which has a useful flux of up 
to 10 times that of  the Harwell reactor. In practice, the 
reactor gain factor would be reduced to ~ 6, because 
the only suitable position is 5 m from the reactor face 
(D2B position). The only other possible position would 
be on a thermal-neutron guide, but there the reactor 
gain factor would fall to ,-~ 1 because of reduced vertical 
divergence and guide tube transmission losses: in this 
position it would be necessary to relax the resolution 
and to work on less complex crystal structures. 

8. Alternatives to the muiticounter diffractometer 

We have shown that a conventional neutron powder 
diffractometer can be designed to give sufficient inten- 
sity for the highest resolution permitted by the particle 
size and extinction effects. I t  might seem unnecessary 
then to look for an alternative and less well-tried pow- 
der diffraction technique which will necessarily face the 
same particle size and extinction limits. However, there 
are at least three alternatives which appear to offer 
particular advantages over the conventional machine, 
and they deserve special mention. We will not attempt 
to make a detailed comparison; this is impossible in any 
case since the alternatives are not so well developed as 
the conventional diffractometer. In the final analysis, 
they can only be judged on published results, and as 
yet there are insufficient results for a complete com- 
parison. 

8.1. THE POSITION-SENSITIVE DETECTOR 

In principle, the best efficiency can be obtained from 
a powder diffractometer by surrounding the sample 
with a position-sensitive detector (PSD), so that all 
of the scattered radiation is collected. In practice, 
this is not quite so attractive, since we are only 
interested in the relatively small sections of the diffrac- 
tion cones for which geometrical focussing is good. We 
might expect though, that even for these regions, in the 
equatorial plane, a PSD detector would be more 
efficient than an angle-sensitive detector such as a 
multi-collimator. 

I t  is easy to show that a PSD will produce the same 
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Gaussian line profiles needed for profile refinement as 
does the sOller collimator. When we scan a rectangular 
counter element over the rectangular projection of the 
sample, a triangular response results due to the folding 
of the two rectangles. This response is the same as the 
triangular response of a s611er collimator, and so the 
two systems are equivalent. When a second triangular 
function, representing the collimator c~ 1, is also folded 
in, an almost Gaussian profile results, as required. The 
best compromise for a scanning PSD is to make the 
detecting elements the same width as the sample, and 
then the fwhm or collimation of the counter (e3) will 
be the angle subtended by the sample at the detector. 

Of  course, the PSD becomes less attractive if it must 
be scanned in the same way as a collimator system, but if 
it remains stationary, only two or three points on the 
profile will be obtained. These points give the inte- 
grated line intensity, but are insufficient to define the 
profile, especially for a complicated pattern of over- 
lapping reflexions. Another solution would be to 
reduce the distance between counter elements, but then 
the number of elements, already very large, produces 
severe calibration problems. In some cases it may be 
easier to scan a periodic aperture over the PSD12). This 
can be designed to produce the same results as scanning 
the PSD itself, but the efficiency of the device would 
then be halved. 

There is no mechanical advantage of a scanning 
PSD over a multicollimator, but it remains necessary 
to examine their relative efficiencies. For example, the 
"efficiency" of our proposed 32 counter multicolli- 
mator  with a resolution of 0.1 ° over a 2 0 range of 160 ° 
say, is 32x0 .1 /160=2%.  A specimen of up to 2 c m  
diameter might be used. This can be compared with an 
efficiency of up to 100% for a PSD covering the same 
range. However, to obtain the same resolution, this 
detector would have to be mounted on a circle of 
radius (2/0.1) x 60 c m =  12 m, compared to the ~ 1.5 m 
required for a multidetector. 

We can only reduce the size of  this huge machine if 
we reduce the diameter of the specimen, and hence the 
scattered intensity. I f  we require only the same inten- 
sity as for the multicollimator, we can reduce the spe- 
cimen diameter by a factor of x/(100/2) = 7, so that we 
have a specimen of diameter 2/7=0.3 cm. Our PSD 
would then have a radius of (0.3/0.1) x 60= 1.8 m, and 
would not be any more "efficient" than a multicolli- 
mator  of  smaller size. 

When we calculate the relative efficiencies taking 
into account the sample size, we find that the PSD is 
only competitive at medium or low resolution. The 
angular spacing between sNler collimators of  width D 

packed around the sample in an arc or radius R is 
D/R, and their efficiency is O~3/(D/R ). The line intensity 
is proportional to the square of the diameter of the 
sample, which can also be D if we neglect for the mo- 
ment the width of the collimator side plates. The overall 
efficiency of the multicollimator system is then pro- 
portional to DE(o~a/(D/R))=Do~aR. The overall effi- 
ciency of a PSD of  the same radius is also propor- 
tional to D E =De%R, since the counter collimation is 
(z 3 =D/R. The length of the s/Sller collimator, and the 
width of its side plates and collimator blades, reduces 
the overall efficiency of this system by a factor of  ~ 0.5, 
but then the counters used for a PSD are only about  
50% as efficient as those used for a multicollimator 
system. It  is reasonable then to put the overall effi- 
ciencies of both systems equal and proportional to 
D~aR. This means that the PSD is at a disadvantage 
for high resolution when the sample diameter must be 
reduced below that which can be used with a multi- 
collimator system. 

In practice, the difficulty of calibrating the larger 
number of counters, and of adding together the results 
from all of them to obtain a pattern suitable for profile 
analysis, is likely to weigh heavily against a PSD, even 
in cases where the overall efficiencies of the two systems 
are comparable. Another practical disadvantage of the 
PSD is that it collects background from a much larger 
region than does the multicollimator, which sees just 
the small volume near the sample (fig. 5). This becomes 
a real problem for the PSD if, as is often the case, the 
sample must be placed in a furnace or cryostat. 

8.2. ELASTIC-SCATTERING TRIPLE-AXIS MACHINE 

Many of the samples contain hydrogen atoms which 
produce a strong "incoherent"  background. This prob- 
lem is more serious for powders than for single 
crystals, since all of  the powder sample contributes to 
the background, but only the small fraction of the 
crystallites having the correct orientation contribute 
to the Bragg peaks. However, the peak to background 
ratio (P/B) increases linearly with increasing resolution 
as is apparent from fig. 2; the peak height is propor- 
tional to the cross-sectional area of  the resolution disk, 
while the background is proportional to its volume 
which becomes small for thin disks or high resolution. 
Caglioti is) has shown that the peak-to-background 
ratio can also be greatly increased by using an energy- 
analysing crystal in front of the counter to discriminate 
against the "incoherent"  neutrons associated with 
inelastic scattering. He has obtained an improvement 
by a factor of ~ 6  in this ratio for NH4Br.  
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It is easy to show, though, that increasing P/B is in 
itself not sufficient to improve the data: it is instead 
necessary to improve the product of peak height and 
P/B ratio, and this Caglioti has not done, since the 
peak height is apparently reduced by a factor of ,-~ 10 
when the analysing crystal is introduced. To see what 
is required, we need only write down the proportional 
error in the peak P: 

a(P)/P = (P + B)÷/P = {[(P/B) + 1]/P(P/B)} ~. 

We have neglected the error in subtracting the back- 
ground, which will be well determined by several points 
in the profile, and in any case, this doesn't make any 
difference to our conclusions. Obviously, if a(P)/P is 
to be reduced, the product P(P/B) must be increased, 
especially if (P/B)~ 1. Unfortunately this product is 
reduced if an analysing crystal is used, except perhaps 
in the case of pyrolytic graphite analysers. 

Another disadvantage of using analysing crystals is 
that it then becomes more difficult to have a multi- 
collimator bank. If the product P(P/B) is to be max- 
imized, it seems better to simply increase the effective 
P using a multicollimator system rather than to 
increase (P/B) and reduce P with an analysing crystal. 

8.3. THE TIME-OF-FLIGHT BACKSCATTER1NG MACHINE 

An interesting alternative to the conventional 
diffractometer, where the wavelength is fixed and the 
scattering angle varied, is the time-of-flight (TOF) 
machine where the scattering angle is fixed and the 
wavelength varied13). The best example, initiated by 
Maier-Leibnitz, uses extreme backscattering 14) so that, 
when the radius of the Ewald sphere is changed, it cuts 
spheres at tangents (fig. 3). This is similar to the situ- 
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Fig. 3. Backscattering TOF geometry in reciprocal space. When 
the neutron wavelength is varied, the Ewald sphere ST cuts 
through the powder diffraction sphere at a tangent. Scattering 
occurs almost simultaneously for a large solid angle ~2z in the 
backscattering direction (2 0 = 180°), c.f. fig. 2. The line width 
depends on the "collimation" ~Qt and Q~ of the incident and 
scattered beams, and on the spread in the measurement of the 

neutron wavelength (velocity). 

ation with the conventional diffractometer in the 
focussing geometry, but with the TOF machine the high 
resolution is maintained for all values of (sin 0/2). As 
well, the intersection is practically simultaneous over a 
large solid angle in the backscattering direction, and 
wide-angle counters can be placed to collect all of this 
diffracted radiation. Steichele '7) has calculated that a 
TOF machine would have between 3 and 20 times the 
effective intensity of a five-counter conventional 
diffractometer operating under similar conditions of 
high resolution, and claims that this could be increased 
by a further factor of 15 by the use of an extended 
counter array covering all of the backscattering region. 

This comparison is not quite correct, because the 
optimum combination of stller divergences has not 
been used to calculate the intensity of the conventional 
machine. If, instead of the choice of c~1=c~3=5', 
~2=10 ', and f l=7 ' ,  the combination ~ , = ~ 3 = 5 ' ,  
7 2 = 2 0 ' ~ 0  ' and fl= 10'-20' is used, section 5 shows 
that the intensity is increased by a factor of between 3 
and 11 without sacrifice of the high resolution. If 32 
counters are used instead of 5, and the vertical diver- 
gence at the counter increased to 10 °, the intensity for 
the conventional machine is increased by a further 
factor of ~ 12, and then compares quite well with that 
for the TOF machine, even when all of the back- 
scattered neutrons are collected. 

The other advantage claimed for the backscattering 
TOF machine is the extended range in (sin 0/2) which 
can be reached because 20 = 180 ° and wavelengths 
down to 2=0.6 A can be used. However, limiting the 
scattering angle to 150 ° with a conventional machine, 
instead of 180 °, reduces the range in reciprocal space 
by only 3.5%, so any advantage comes from the use of 
short wavelengths. Unfortunately, neutron-guide-tube 
transmission losses are high for short wavelengths; it is 
necessary to divide the neutron spectrum into a number 
of energy ranges and to count for a longer period in the 
short-wavelength range. Similar intensity difficulties 
are encountered with a conventional machine operating 
at short wavelength, but with cooled monochromators 
it is possible to extend the range to compete quite 
favourably again with the TOF machine. There is, 
however, a more fundamental difficulty with working 
at short wavelengths on either machine: as we have 
seen in eq. (5), the space between peaks decreases 
rapidly with (2/d) 2, and for large structures the peaks 
become far too crowded, even for high resolution and 
the profile-refinement technique. 

The resolution for the TOF machine is measured by 
A2/2, where A2 is the difference in wavelength between 
peaks which are just resolved. If this is to be compared 
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with A (2 0) for the conventional diffractometer we must 
obtain the derivative ~30/a2 of the Bragg equation, from 
which it follows that a change AO in the Bragg angle is 
equivalent to a change A2 in the wavelength, or Ad in 
the lattice dimension, where: 

A2 Ad 
- = cot OAO 

d (11) 

= 5 x 1 0  -4, i f 0  = 60 ° andA(20)  = 0 . 1  °. 

It  is in fact possible to measure the wavelength to 
this precision using the TOF technique, provided long 
(150 m) flight paths are used~4). There is a penalty, 
however, in that a long flight path reduces the diver- 
gence of the incident beam far below that which could 
be used on a backscattering machine, with corre- 
sponding losses in intensity: a neutron guide tube must 
be used to limit these losses, but it is less successful for 
short-wavelength neutrons. The TOF technique may 
actually be better suited to low- and medium-resolution 
instruments if high intensity is required, since then short 
path lengths and large incident solid angles can be used. 
It is not even necessary to have a nuclear reactor; a 
particle accelerator can be used to provide the required 
bursts of  thermal neutronsa5). 

To find the resolution function required for the TOF 
machine, we must obtain the derivative (~3d/@) from 
the Bragg equation (4) and put Ap = 1 as before. Then: 

d 2 sin z 0 (12) 

This is the same as for the conventional machine, 
as can be seen by combining eqs. (11) and (5). In 
fig. 4 we have plotted the required resolution against 
that available for both TOF and conventional diffrac- 
tometers. The instrument parameters for the conven- 
tional machine have been chosen to obtain a good 
match between the required and available resolution 
functions, but this is not possible with the TOF ma- 
chine, where A2/2 increases slowly with (sin 0/).), 
instead of decreasing rapidly as desired. This means 
that the resolution of the TOF backscattering machine 
is much better than it need be at low (sin 0/2) and 
much worse at high (sin 8/2). The intensity and resolu- 
tion problems make it difficult to use the extended 
range in (sin 0/2), except for simple structures. 

The TOF backscattering geometry has some practi- 
cal advantages in that only one small window is needed 
for both the incident and diffracted beams. This may 
make it easier to construct high-pressure sample 
containers, for examplC6). However, it has the dis- 

advantage that everything within the path of  the beam 
scatters into the counters, whereas with the conven- 
tional machine scattering from cryostats, furnaces, 
and pressure cells can be eliminated for a wide range of 
28 simply by limiting the dimensions of  the incident 
and diffracted beams, as shown in fig. 5. 

Nothing can yet be said about the precision of the 
TOF diffraction pattern, because data refinements have 
not been completed, but there are some formidable 
sources of possible systematic error. Steichele 17) 
groups them into five sections: irregularities in the 
incoming spectrum, differences in the efficiencies of  
the counters, inhomogeneities in the intensity of  the 
incoming beam or in the sample, measurement of the 
incoming spectrum, and measurement of  the absorp- 
tion characteristics of the sample. 

In particular, it is likely that extinction will be a more 
serious problem for a TOF machine than for a conven- 
tional powder diffractometer. Primary extinction may 
become important, because long wavelengths must be 
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Fig. 4. Resolution functions for the conventional and back- 
scattering TOF powder diffractometers, compared to that 
required to resolve adjacent lines for a cubic crystal with a = 24 A. 
The TOF machine has higher resolution for low (sin 0/2), 
and lower resolution than required for high (sin 0/2). The con- 
ventional machine can be designed to match the resolution 
required at low and medium (sin 0/2), but the high (sin 0/2) 
region cannot be reached, unless the wavelength is reduced, and 

then the resolution again falls below that required. 
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used to obtain the low-order reflexions in the back- 
scattering geometry. A secondary extinction effect 
also occurs with powder measurements, since a neutron 
reflected from one crystal grain may be reflected again 
by another. But with a conventional machine the 
probability of multiple reflexion does not depend on 
the structure factor, so secondary extinction does not 
give a systematic error as it does with single crystals: 
the effect is equivalent to absorption, and can be in- 
cluded in this correction. With a TOF machine, though, 
reflexions reduce particular wavelengths, giving sharp 
Bragg cut-offs in the spectrum of the transmitted beam: 
they can easily be seen on the Garching diffractometer. 
This produces systematic errors in the reflexions very 
like those produced by secondary extinction in a 
single crystal. However, since the orientation distri- 
bution for a powder is isotropic, secondary extinction 
corrections can in principle be made precisely. 

In fact, it is likely that all these difficulties will be 
largely overcome, and that the TOF backscattering 
machine will eventually prove superior in some respects 
to the conventional diffractometer. The margin of 
superiority will not be very large, but there is a certain 
intellectual satisfaction in using this most elegant 
technique. 

9. Conclusion 

A re-examination of the conditions for optimum 
resolution and intensity for a conventional powder 

diffractometer for crystal structure refinement has 
shown that it is best to have a monochromator take-off 
angle of ~120 °, c ~ = e 3 = ~ ,  f i = 2 ~ 4 ~ ,  ~2=2fl,  and 
a vertical divergence at the counter of at least 5 °. These 
conditions cannot be completely satisfied for a medium- 
resolution diffractometer (~-0.5°) ,  because mono- 
chromating crystals with large mosaic spread fl are not 
available. To go to the highest resolution permitted by 
the powder particle size [A (2 0)--- 0.1 ° or Ad/d ~- 10- 3], 
it is only necessary to reduce el =e3  =~,  since the 
mosaic spread of the standard squashed germanium 
monochromators (~0 .2  °) then satisfies the optimum 
conditions. The intensity then falls only with ct z and 
the peak height with ct; it is possible, using multiple 
counters on a high-flux reactor, to make up these 
losses and as well to provide the additional factor of 
eight in effective intensity required to examine struc- 
tures twice as large in linear dimensions as those 
possible now, i.e. unit cells of up to 3500 A 3 volume 
and low symmetry. 

This high-resolution powder diffractometer would 
open up a new field in crystallography, because it would 
then be possible to quickly compare quite complex 
structures under different conditions of temperature, 
pressure, and chemical composition. Such a com- 
parison can yield an insight into crystal forces and 
packing which is not at present available from single- 
crystal measurements, which are usually confined to 
standard temperature and pressure. As well, there are 
many interesting materials for which single crystals 
are either too small, twinned, or otherwise unsuitable 
for structural measurements. The powder method also 
has the advantage that systematic errors such as 
extinction are much less important than for single- 
crystal work, and the structural results can therefore be 
more precise. This is important, because the measure- 
ment of exact atomic positions and vibrational ampli- 
tudes is the first step in the study of electronic bonding 
using X-ray or electron-diffraction techniques. Precise 
structural information is also required for the study of 
phase transitions, which involve very small changes in 
the atomic positions and vibrational amplitudes. 

Finally, we have examined some other techniques 
which might be used for neutron powder diffraction. 

Fig. 5. The scattering volume seen by the position-sensitive 
detector and backscattering TOF machines (shaded) is larger 
than that seen by the conventional diffractometer (cross-hatched). 
This can be important if the sample is enclosed in a cryostat or 
furnace. On the other hand, with the backscattering machine 
one small window serves for both the incident and scattered 

beams. 

This paper took shape at Harwell and Grenoble 
in late 1973 and early 1974 during discussions with 
Drs Bertaut, Dachs, Fender, Lomer, Rietveld, Steichele, 
Steiner, Wedgewood, Willis, Windsor, and others who 
have contributed many ideas for which the author 
is most grateful. 
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