PROFILE REFINEMENT OF NEUTRON POWDER DIFFRACTION PATTERNS

CRYSTAL AND MAGNETIC STRUCTURES

by

A.W. Hewat

ABSTRACT

The Rietveld technique of profile refinement of powder diffraction patterns makes the powder method much more competitive with the standard single crystal technique for the precise determination of moderately complex crystal structures This report describes modifications to Rietveld's original computer program to allow the refinement of anisotropic thermal vibrations, and is intended as a guide for the use of the program. It is essentially a revised edition of an unpublished Harwell report *, and examples are given of published Harwell results in which the profile refinement technique has been used to study structural transitions in ferroelectrics, antiferroelectrics and hydrogen bonded materials. No attempt has been made to review the earlier work of Rietveld et al. on magnetic structures nor recent work on defect structures, Debye-Waller factors and standard crystal structure determination.

* Hewat, A.W. Harwell Report 73/239 unpublished, January 1973

CONTENTS

- 1. Introduction. Advantages of the neutron powder method for crystal structure determination
- 2. Summary of the Riietveld refinement procedure
- 3. Modifications for anisotropic temperature factors
- 4. Examples of powder patterns analysed at Harwell
 - 4.1 Ferroelectric and antiferroelectric structural transitions in perovskites
 - 4.2 Hydrogen bonded antiferroelectrics and ferroelectrics
 - 4.3 Measurements of anisotropic and anharmonic vibrational amplitudes
 - 4.4 Other powder work at Harwell using the profile refinement program
- 5. Input and output format for the Fortran programs
 - 5.1 Preparation of profile data
 - 5.1.1 Format of data cards
 - 5.1.2 Printout for profile preparation program
 - 5.2 Structure refinement
 - 5.2.1 Format of data cards
 - 5.2.2 Prinlout of structure refinement program
 - 5.2.3 Punched output of refinement program
- 6. Example of the use of the programs
 - 6.1 General description of the test problem
 - 6.2 Data cards for profile preparation
 - 6.3 Data cards for structure refinement
 - 6.4 Printout of profile preparaition
 - 6.5 Printout of structure refinement
 - 6.6 Punched output of structure refinement

Acknowledgements

References

- **APPENDIX A** Fortran listing of the programs
- **APPENDIX B.** Profile plotting programs

1. INTRODUCTION. ADVANTAGES OF THE NEUTRON POWDER METHOD FOR CRYSTAL STRUCTURE DETERMINATION

It is much easier to obtain a powder specimen than a single crystal of the size required for neutron diffraction : in fact, in some cases it is impossible to grow a suitable single crystal (§ 4.2). Even when single crystals are available, a strong argument can often be made for using the powder method instead.

At first sight, the powder method appears to be at a great disadvantage for work on any but the most simple structures. The usual technique of integrating under the Bragg peak to obtain the intensity or magnitude of the structure factor for each reflexion is impossible for more complex structures because of the overlap of adjacent Bragg peaks. This immediately rules out all of the standard methods of structure refinement developed over the past sixty years. It does not however, mean that the structural information is lost, merely that a new technique is needed to retrieve it (Rietveld, 1967). The very complexity of overlapping powder patterns means that they contain much information about the crvstal structure. Rietveld's idea was to forget about separating the individual Bragg reflexions, and to concentrate instead on using the detailed shape of the powder pattern to decide between various structural models. The parameters for these models can be refined to give the best possible fit to the powder pattern profile.

Cf course, information is irretrievably lost in a powder pattern if there is exact coincidence of two or more diffraction peaks. For example, in the cubic perovskite structure ABO₃, differences between the intensities of the (710), (550) and (543) reflexions, all of which appear at the same Bragg angle, contain information about the anisotropy in the vibrations of the oxygen atoms (Hewat 1972a). Never-the-less, a large amount of information is retained in a powder diffraction pattern, including information about the anisotropy of the vibrational amplitudes.

By making use of all of this information it is often possible to learn as much about a crystal structure from a one day powder scan as from a much longer period on a single crystal instrument : the powder patterns mentioned in this report required less than twenty-four hours of instrument time each. In a single crystal experiment, diffractometer time is spent in aligning the crystal and checking for twinning, extinction etc. Sometimes a number of crystals must be tried to find the best one. Even with on-line computer control, a single crystal instrument is often inefficient in operation. If integrated Bragg intensities are required, most of the time is spent off the centre of the peak, measuring the base and the background regions, and more time is spent re-orientating the crystal for each Bragg peak Much less time is spent on aligning and testing a powder-specimen, and for complicated patterns, a greater proportion of the operation time is spent on counting near the centre of a Bragg peak. A simple counter scan is sufficient for a powder run, so that an expensive computer is not required to control the experiment.

Apart from the obvious cost-benefit advantages of high rates of data collection, the study of the effect on the structure of changes in temperature, pressure, etc. becomes very attractive when the run time is short. Such changes in the environment of a sample are very much easier to arrange on a powder difractometer than on a single crystal machine where the sensitive crystal orientating mechanism is in the way.

Extinction, or the breakdown of the usual kinematic diffraction theory for the large single crystals needed for neutron structural work, introduces syst.ematic errors into single crystal data, and limits the precision with which crystal sructures can be obtained.from such data. Other systematic errors ocrur because of the difficulty of correcting for thermal diffuse scattering. The extinction effect is very small for the powder method and the contribution from thermal diffuse scattering appears to be less important, so that in some cases more precise structures can be obtained with the powder method.

Finally it should be remembered that the profile program is a technique for structure refinement : it was not intended to compete with methods such as those based on Fourier techniques for the solution of structures about which very little is known. However with neutron diffraction we are almost always trying to refine the details of a structure which has already been solved approximately by X-ray or other techniques - finding more precise positions for the atoms, especially those of hydrogen, and the lighter elements, measuring magnetic moments, nuclear and magnetic disorder, defect structures, atomic vibrational amplitudes etc. For these structure refinement problems the Rietveld method of profile analysis of neutron powder patterns often has many advantages over the single crystal technique.

2. SUMMARY OF THE RIETVELD REFINEMENT PROCEDURE

Figure 1 shows a section of the powder pattern obtained at Harwell for the orthorhombic phase of perovskite KNbO₃ (Hewat, 1973a). The points represent the actual counts obtained for each scattering angle 2 θ , and the solid line the pattern calculated for the structure obtained from the profile refinement program. In the 2 θ range 61° to 75.5° there are 35 Bragg reflexions, the centres of which are marked along the base of the scan. Over 200 independent reflexions contribute to the complete pattern, measured between 2 θ limits of 10° and 11° in less than twenty-four hours.

Rietveld showed that each Bragg reflexion can be described by a gaussian peak $y_{i,k}$ whose full width at half height H_k depends on three parameters U, V and W.

$$H_k^2 = Utan^2\theta_k + Vtan\theta_k + W$$

This gaussian

$$y_{i,k} = I_k.exp-b_k(2\theta_i-2\theta_k)^2$$

with $b_k = 4ln2/H_k^2$ is arbitrarily cut off at a distance 1.5 H_k on either side of its centre $2\theta = 2\theta_k$ i.e. when its contribution becomes very small. The positions $2\theta_k$ and intensities I_k of these reflexions are determined by the structural parameters, ($I_k = tF_k^2 j_k L_k^2 \sqrt{ln2}/(H_k \sqrt{\pi})$ where t is the counter step width, F_k the structure factor, j_k the multiplicity and L_k the Lorentz factor).

For each 20 point in the diffraction pattern, the profile refinent program calculates the contributions from all of the Bragg reflexions in the vicinity, and compares the total $y_i(calc)$ with the observed count $y_i(obs)$ (Rietveld, 1969). The structure parameters, which determine $y_i(calc)$, are then adjusted to minimize the quantity:

$$_{\rightarrow}^{2} = \sum_{i} w_{i} . |y_{i}(\text{obs})^{-1}/_{c}.y_{i}(\text{calc})|^{2}$$

The summation is over all the 2 θ points i and $w_i \propto 1/\sigma_i^2 \approx 1/y_i(obs)$ is the weight allotted to the count $y_i(obs)$ while c is a scale factor. Rietveld's weighting scheme can be justified in the following way.

Suppose that the counts $y_i(obs)$ are samples of some population function $y_i(calc)$, which is completely defined by the crystal structure parameters. The probability p_i that a given sample count $y_i(obs)$ will differ from $1/c.y_i(calc)$ is given by

$$p_i \propto (1/\sigma_i).exp\{-(1/2\sigma_i^2).[y_i(obs)-^{1/2},y_i(calc)]^2\}$$

since each sample count comes from a normal distribution (a Gaussian peak) centered on $1/c.y_i(calc)$, with standard deviation $\sigma_i^2 = 1/c.y_i(calc)$. The probability P that all of the counts are samples of the population 1/c.y(calc) is the product $\prod_i p_i$ of the individual probabilities:

$$\mathsf{P} = \prod_{i} \mathsf{p}_{i} \propto (\prod_{i} 1/\sigma_{i}) \exp\left\{-\sum_{i} (1/2\sigma_{i}^{2}) [y_{i}(\text{obs})^{-1}/c, y_{i}(\text{calc})]^{2}\right\}$$

This probability is maximized if the exponent factor $rightarrow^2$ is minimized using the weighting scheme $w_i \propto 1/\sigma_i^2 = 1/y_i(calc) \approx 1/y_i(obs)$.

At low angles, allowance is made for peak asymmetry, and another parameter P is introduced (Rietveld, 1969). A fifth parameter Z is needed to specify the counter zero-point. In principle these parameters U, V, W, P and Z be determined once and for all for a given diffriactometer geometry, but in practice it is necessary to refine at least Z for every pattern since any small change in the counter zero-point would otherwise have a large effect on the correspondence obtained between the observed and calculated patterns.

For the same reason, it is necessary to refine the lattice parameters a, b, c, α , β , γ even if both they and the wavelength are known. On the other hand, the fact that small changes in these parameters have a large effect on \downarrow^2 means that they can be determined very precisely. For example, it is poss to obtain values, reproducible between independent runs on the PANDA diffractmeter, to at least 1/4000 and 0.02° for the cell edges and angles respectively.

3. MODIFICATIONS FOR ANISOTROPIC TEMPERATURE PARAMETERS

When anisotropic temperature factors β_{ij} are introduced, the real and imaginary parts of the atomic structure factor $F_k = A_k + iB_k$ become (BML-Busing, Martin and Levy, 1962)

XXXXXXXXXX

where

XXXXXXXXXXXXXXXXXXX

 $exp r = exp \{-\sim(h2)r\sim II(K) + (k2)r\sim 22(") + (1)r\sim 333(K)\}$

The $(hk)_r$ are index products transformed to the equivalent position r. For atoms in general positions $(hk)_r = h_r k_r$, and this has been taken to be universally true for the purposes of the profile refinement program, as in the OR-FLS program (BML). The usual rules (Levy, 1956) can be used to determine the symmetry properties of the temperature parameter tensors $\beta_{ij}(\kappa)$. Constraint relations between the various β_{ij} can be introduced by means of the parameter codewords and constraint cards (§5.2) so that these symmetry properties are retained throughout the refinement.

New expressions for the derivatives of F_k with respect to the various parameters can easily be obtained from the above expressions : in all cases factor $\exp_{\kappa r}$ multiplies Rietveld's original $\cos_{\kappa r}$ and $\sin_{\kappa r}$ factors, and in case of the derivatives with respect to $\beta_{ij}(\kappa)$, additional factors of $(hk)_r = h_r k_r$ also appear inside the summation over equivalent positions.

Apart from the magnetic parameters (Rietveld, 1969), the structur parameters are now equivalent to those used in the 0R-FLS program (BML), except that it is possible to specify either B_{ij} or β_{ij} temperature parameters in the input data. The program converts to β_{ij} for internal calculations, but reconverts to B_{ij} for the detailed print-out of the results.

4. EXAMPLES OF POWDER PATTERNS ANALYSED AT HARWELL

The five diffractomoters used for ~owder work at Harwell have bee d~ scr,bed by IJedgwood ~I9h8) I'e I,Iill only r~ention here some recent ~ork on im resolu,iini~ PA~iDA machir!-, *for which* ~he mon~Jchro~ator ancJle c2n be v

~t ~ 3 ~ n ~ JiV ~ J a ~arliJ2 ~ J~V ~ S Frol~ 0./ A t ~

Characters 1432 73 94.90

from the hhl planes of a squashed germanium monoch~omator. The full width al half height at the focussing angle 2a (approximately equal to the monochromi take-off angle) is 0.5 degrees, and 23 can be set to a precision approachint + 0.01 degrees over the range -10° to 117i' by means of a ~oire fringe syste~ The design of a high resolution powder diffractometer has been discussed el~ where (Hewat, 1974).

The neutron flux (about 7 x 105 counts/cm2/sec at the specimen) il such that a run can often be completed in 24 hours. Any temperature between 4.2 K and 1200°C is available at the specimen, which usually consists of

5-25 gm of powder in a vanadium or silica slass can.

4.1 Ferroelectric and antiferroelectric structural transition in perovskitt

At high temperatures the perovskite AB03 structure is cubic, with atoms on the corners, B atoms on the centres and O atoms on the centres of faces of the cubic cell. When the temperature is lowered, certain soft vibr tional modes become unstable, and the resulting atomic displacements (~ 0.1 lo~iier the s~rlrretny *i'J\$* the lattice, witii changes r)i- the order of 1 % in ~*h*2

lattice constants ~e.g. Cochran and Z;a, i96~i). These s~all changes cause

splitting of the cubic perovskite diffraction lines, which cannot then be f resolve~; quite complicated powder patterns result (figure 2, from Hewat,

1973 a). As well~ in "antiferroelectric" materials, the unit cell becomes a m~ii1t-,ple of t,le original cell, and superlattice lines appear in the powder I tern (Hewat, 1973 c). It would be i~possible to analyse such complex patter on the usual basis of integrated intensities. For example, more than 2CO di - r,ct reflexiorls contribute ~o the pattern for orthorhcmbic K~ibO3 (figure 2

We have been able to analyse such patt~rns though, using the prof ~ ir--rent pr3gilair~ ith anisrt,opic terliperaJ-u-e para~e L~ns. Figure 2 is *typ*

Seen Rejected Percentage

Characters 1637 28 98.29

the entire pattern approaches the limit imposed by purely statistical fluctu tions in the number of counts observed. The atomic positions are determined

this fit to at least + 0.01 A, the cell dimensions to + 0.001 A and the cell angles to $+0.02^{\circ}$. To allow comparison of the results of the profile refinem with those of single crystal work, we can calculate the quantity

RNuclear = 100 ~ I Fk(obs) ~ k (calc)| /~ Fk(obs)

using the observed Intensities integrated for each reflexion at the end of t refinement. The observed counts can be divided up between overlapping reflex **according to** the relative contributions of these reflexions computed from th fitted structure (Rietveld, 1969). Typical RNUclear factors of 2.5 and 2.6 w obtained for the orthorhombic and rhombohedral modifications respectively of Ki~bO3. This compares favourably with careful single crystal measurements for similar problems (Hewat, Rouse~ and Zaccai, 1972 ; Hewat, 197~ b). The uncertainties in the values of the structural parameters are no larger for the po~ results than for the sin~le crystal work.

G..~ler ~ r~v~'cl~es ~ diF :. '.l'i'.li~ C ~ rr ~ c ~nclt~ B~iO3

(He~lat, 1~74 b)~ N~NbO3 (Hew3t~ c), I~Tan~,~ SrTiO3~ i~bHfO3, NaTaO3, AgNb(and AgTaO3.

4_~ Hydro~en bonded ~nt;~erroelec~rics and ferroelectrics

SIn~le cryst~ls of hJdrogen bonded NH4H2PO~ and NH4H2AsQ4 break up w~en the antiferroel~ctric structural transition is encountered at lower tem peratures. This m~kes sin~lie cr!st~l w~k alr,!ost impossiblej~ but has no effe~ on

powder wor~. Fi3ure 3 sho~s the chan~es observed **in the powder pattern o4** fully deJter~ted ~'H~I~?~04 when the ant.lerro~lec~ric transition occurs (Hewa ~ . The lattice symn~ y is lcJer2d ~'rlen ti~e nydrcyen atoms order on on~

•J, t~,e oth~ nF t,l¢~ ?.1 tt1~r!Jti~/~' 5' 'S ~IV~ to F I~.I at I~ r ~, p.~at~I. t

Seen Rejected Percentage

Characters 1553 89 94.27

as postulated by Nagamiya (see Kanzig, 1957). The strong superlattice reflex appear in the low temperature phase because NH4H2P04 is an antiferroelectric rather than a ferroelectric like KH2P04. Similar results have been obtained

deuterated NH4H2AsO4.

Other hydrogen bonded materials studied using the powder method in olude deuterated ferroelectric NaH3(SeO3)2 and deuterated SnC12.2H20.

4.3 Measurements of anisotropic and anharmonic vibrational amplitudes

Because extinction ~ffects are ~esligible for the powder method we have used powder patterns to investigate thermal vibrations in several inter~ ting materials.

Vibrational amplitudes, and lattice dynamical measurements in gene are of importance for the A15 structure high temperature superconductors, su as Nb3Sn. This material also has a structural transition at 45 K which we ar~ attempting to study using the powder method. A profile aralysis of the powde diffraction pattern shows that the chains of Nb atoms vibrate \-~ith considerai lar~r ~i~rilit.!?~ s In dire(:tions pil~pendiiular to the~7e chains ~han a,ong the The question cf the so-called lo.~ temperature anharmcnicity of the vibration of the Sn atoms (Hewat, Ig72 b) has been ri~isolved; further information will becGme aYailabie when the low temperature patterns have been analysed.

Further powder work on anhar~onic vibrations has been done on mate I~t~ing the rocksalt and ~incl)lende structures.

4.~ <u>"ther po~ r ~lork</u> at Han~II using the pro~ile refinement pro~!ram

A l~r~e amoi n~ of ~ork on defect and other structur~s has bi e l ~on~i riy Fendoir, Jacc~,son, Cheetham (1973), vtJn Dreele, Collins and others froJl

0 ~ illis, Hay~.~o,od, HiJ~ i ings ar,d others at iiari..~Il are also applyiniJ Li I ~ t O ~ ch, ~ o ga ,~ i S ~ .. t ~ i?s, b~ o

to tr-y to ~evie~-~/ here ~ i rar,idly eX~J;~ nq field h-inr~ rhe r?sults ar~

 $DU"J \sim \underline{J}d$.

Seen Rejected Percentage

Characters 1575 58 96.32