

THE RTETVELD COMPUTER PROGRAM FOR THE PROFILE
 REFINEMENT OF NEUTRON DIFFRACTION POWDER PATTERNS

 MODIFIED FOR ANISOTROPIC THERMAL VIBRATIONS

 MODIFIED FOR ANISOTROPIC THERMAL VIBRATIONS}

by

A. W. HEWAT

Materials Physics Division, UKAEA Research Group,
Atomic Energy Research Establishment,
HARrELL
January 1973

- REL $73 / 239$

THE RIETVELD COMFUTER FROGRAM FOR THE FROFIIE

REFINEMENT OF NEUTRON DIFFRACTION POHDER PATTERNS
KODIPIED FOR ANISOTROPIC THERMAL VIBRATIONS
by
A. TI. HEKRAT

ABSTRACT

The Rietveld technique of profile refinement of powder diffraction patterns makes the powder method much more competitive with the standard single crystal technique for the precise determination of moderately complex crystal structures. This report describes modifications to Rietveld's original computer program to allow the refinement of anisotropic thermal vibrations, and is intended as a guide for the use of the program at Harwell. Examples are given of recent work at Harwell in which the tech. nique has been used to study struotural transitions in ferroelectrics and hydrogen bonded materials, anisotropic and anharmonic atomic vibrations, and defect and magnetic structures, as well as for standard crystal structure determination.

[^0]January 1973.

1. Introduction. Advantages of the neutron powder method for
crystal structure determination
1
2. Summary of the Rietveld refinement procedure
3. Modifications for anisotropic temperature factors 4
4. Examples of powder npatterns analysed at Harwell 5
4.1 Ferroelectric and antiferroeleotric structural transitions in perovskites 5
4.2 Hydrogen bonded antiferroelectrics and ferroelectrics 6
4.3 Measurements of anisotropic and anharmonic vibrational amplitudes 7
4.4 Other powder work at Harwell using the profile refinement program 7
5. Input and output format for the Fortran programs 7
5.1 Preparation of profile data 8
5.1.1 Format of data cards 8
5.1.2 Printout for profile preparation program 10
5.2 Structure refinement 10
5.2.1 Format of data cards 12
5.2.2 Printout of structure refinement program 18
5.2.3 Punched output of refinement program 19
6. Example of the use of the programs 21
6.1 General desoription of the test problem 21
6.2 Data cards for profile preparation 24
6.3 Data cards for structure refinement 25
6.4 Printout of profile preparation 26
6.5 Printout of structure refinement 31
6.6 Punched output of structure refinement 35
Acknowledgements 23
References 23
APPENDIX A. Fortran listing of the programs 38
APPENDLX B. Profile Plotting programs 60
7. Introduction. Advantages of the neutron powder method for crystal structure determination

It is much easier to obtain a powder specimen than a single crystal of the size required for neutron diffraction: in some cases in fact, it is impossible to grow a suitable single crystal (34.2) . Even when single crystals are available, a strong argument can of ten be made for using the powder method instead.

At first sight, the powder method appears to be at a great disadvantage for work on any but the most simple structures. The usual technique of integrating under the Bragg peak to obtain the intensity or magnitude of the structure factor for each reflexion is impossible for more complex structures because of the overlap of adjacent Bragg peaks. This immediately mules out all of the standard methods of struoture refinement developed over the past sixy years. It does not however, mean that the structural information is lost, merely that a new technique is needed to retrieve it (Rietveld, 1967). The very complexity of overlapping powder patterns means that they contain wuch information about the orjstal structure. Rietveld's idea was to forget about separating the individual Bragg reflexions, and to concentrate instead on using the detailed shape of the powder pattern to decide between various structural models. The parameters for these models can be refined to give the best possible fit to the powder pattern profile.

Of course, information is irretrievably lost in a powder pattern if there is exact coincidence of two or more diffraction peaks. For example, in the cubic perovskite structure ABO_{3}, differences between the intensities of the (710), (550) and (543) reflexions, all of which appear at the same Bragg angle, contain information about the anisotropy in the vibrations of the oxygen atams (Hewat, 1972a). Nevertheless a large amount of information is retained in a powder pattern, including information about the anisotropy of the vibrational amplitudes.

By making use of all of this information it is often possible to learn as much about a crystal structure from a one day powder scan as from a much longer period on a single orystal instrument: the powder patterns mentioned in this report required less than twentymfour hours of instrument time each. In a single crystal experiment, diffractometer time is spent in aligning the orystal and checking for twinning, extinction etc. Sometimes a number of crystals must be tried to find the best one. Even with on-line computer control, a single crystel instrument is often-inefficient in operation. If integrated Bregg intensities are required, most of the time is. spent off the centre of the peak, measuring the base and the background regions, and more time is spent remorientating the crystal for each Brags peak. Much less time is spant on aligning and testing a
powder specimen, and for complicated patterns, a greater proportion of the operation time is spent on counting near the centre of a Bragg peak. A simple counter scan is sufficient for a powder run, so that an expensive computer is not required to control the experiment.

Apart from the obvious cost-benefit advantages of high rates of data colm lection, the study of the effect on the structure of changes in temperature, pressure, etc. becomes very attractive when the run time is short. Such chenges in the environment of a sample are very much easier to arrange on a powder diffractometer than on a single crystal machine, where the sensitive crystal orientating mechanism is in the way.

Extinction, or the breakdown of the usual kinematic diffraction theory for the lerge single crystals needed for neutron structural work, introduces systematic errors into single crystal data and limits the precision with which the crystal structure oan be obtained from such data. Other systematic errors occur because of the difficulty of oorrecting for thermal diffuse scattering. The extinction effect is very small for the powder method and the contribution from thermal diffuse scattering appears to be less important, so that in some cases more precise structures can be obtained with the powder method.

Finally it should be remembered that the profile program is a technique for structure refinement: it was not intended to compete with methods such as those besed on Fourier techniques for the solution of structures about which very little is known. However with neutron diffraction we are almost always trying to refine the details of a structure which has already been solved approximately by X-ray or other techniques - finding more precise positions for the atoms, especially those of hydrogen, and the lighter elements, measuring magnetic moments, nuclear and magnetic disorder, defect structures, atomic vibrational amplitudes etc. For these structure refinement problems the Rietveld method of profile analysis of neutron powder patterns often has many advantages over the single orystal technique.

2. Summary of the Rietveld refinement procedure

Figure 1 shows a seation of the powder pattern obtained at Harwell for the orthorhombic phase of perovskite KNbO_{3} (Hewat, 1973a). The error bars indicate the statistical uncertainties in the count obtained at each point, and the stars correspond to the calculated pattern for the structure obtained from the profile refinement program. In the 2θ range 61° to 75.5° there are 35 Bragg reflexions, the centres of which are marked along the base of the scan. Over 200 independent reflexions contribute to the complete pattern, measured between 2θ limits of 10° and 116° in less than twenty-four hours.

For each 20 point in this pattern, the profile refinement program calculates the contributions from all of the Bragg reflexions in the vicinity, and compares the total y_{i} (calc) with the observed count y_{i} (obs) (Rietveld, 1969). The structure peremeters, which determine $y_{i}(c a l c)$, are then adjusted to minimize the quantity

$$
x^{2}=\sum_{i} w_{i}\left[y_{i}(o b s)-\frac{1}{c} y_{i}(c a l c)\right]^{2}
$$

The summation is over all the 2θ points i, and $w_{i} \propto 1 / \sigma_{i}^{2}=1 / y_{i}$ (obs) is the weight allotted to the count y_{i} (obs). cis:a.soale:factor. Rietveld's weighting scheme can be justit'ied in the following way.

Suppose that the counts y_{i} (obs) are samples of some population function $\frac{1}{c_{-}} y_{i}$ (caic) which is completely defined by the crystal structure parameters. The probability p_{i} that a given sample count y_{i} (obs) will differ from $\frac{1}{c} y_{i}$ (calc) is giveniby

$$
p_{i} \propto \frac{1}{\sigma_{i}} \exp \left\{-\frac{1}{2} \frac{\left[y_{i}(\operatorname{obs})-\frac{1}{c} y_{i}(\cos c)\right]^{2}}{\sigma_{i}^{2}}\right\}
$$

since each sample count comes from a normal distribution centred on $\frac{1}{c} y_{i}$ (calo), with standard deviation $\sigma_{i}=\sqrt{\frac{1}{c} y_{i}(c a l c) . ~ T h e ~ p r o b a b i l i t y ~} P$ that all of the counts are samples of the population $\frac{1}{c} y^{\prime}\left(c_{a l c}\right)$ is the product $\Pi_{i}^{\prime} p_{i}$ of the individual probam bilities

$$
P=\Pi_{i} p_{i} \propto \exp \left\{-\frac{1}{2} \sum_{i} \frac{\left[y_{i}(o b s) \div \frac{1}{c} y_{i}(c a l c)\right]^{2}}{\sigma_{i}^{2}}\right\} M_{i}\left(\frac{1}{\sigma_{i}}\right)
$$

This probability is maximized if the exponent factor X^{2} is minimized using the weighting scheme $W_{i} \propto 1 / \sigma_{i}{ }^{2} \simeq 1 / y_{i}(o b s)$.

Rietveld shows that each Bragg reflexion can be described by a gaussian peak $y_{i, k}$ whose full width at half height H_{k} depends on three parameters U, V and W

$$
H_{k}^{2}=U \tan ^{2} \theta_{k}+V \tan \theta_{k}+W
$$

This gaussian

$$
y_{i, k}=I_{k} \exp -b_{k}\left(2 \theta_{i}-2 \theta_{k}\right)^{2}
$$

with $b_{k}=4 \ln 2 / H_{k}^{2}$ is arbitrarily cut of f at a distance $1.5 H_{k}$ on either side of
its centre $2 \theta=2 \theta_{k}$ i.e. when its contribution becomes very small. The positions $2 \theta_{k}$ and intensities I_{k} of these reflexions are determined by the structural param meters, ($I_{k}=t F_{k}{ }^{2} j_{k} L_{k} 2 \sqrt{\ln 2} /\left(H_{k} \sqrt{\pi}\right)$ where t is the counter step width, F_{k} the structure factor, j_{k} the multiplicity and L_{k} the Lorentz factor).

At low angles, allowance is made for peak asymetry, and another parameter P is introduced (Rietveld, 1969). A fifth parameter Z is needed to specify the counter zerompoint. In principle these parameters U, V, W, P and Z can be determined once and for all for a given diffractometer geometry, but in practice it is necessary to refine at least Z for every pattern, since any small change in the counter zero-point would otherwise have a large effect on the correspondence obtained between the observed and calculated patterns.

For the same reason, it is necessary to refine the lattice parameters a, b, c, a, β, γ even if both they and the wavelength are known. On the other hand, the fact that small changes in these parameters have a large effect on χ^{2} means that they can be determined very precisely. For example, it is possible to obtain values,reproducible between independent runs on the PANDA diffractometer, to at least $\pm 0.001 \AA$ and $\pm 0.02^{\circ}$ for the cell edges and angles respectively.

3. Modifications for anisotropic temperature parameters

When anisotropic temperature factors $\beta_{i j}$ are introduced, the real and imaginary parts of the atomic structure factor $F_{k}=A_{k}+i B_{k}$ become (BMLBusing, Martin and Levy, 1962)

$$
\begin{aligned}
& A_{k}=\sum_{\dot{k}} n_{\dot{k}} b_{\dot{k}} e^{-B_{\dot{k}} \sin ^{2} \theta_{k} \lambda^{2} \sum_{r} \exp _{\dot{k} r} \cos { }_{k r}} \\
& B_{k}=\sum_{n_{\dot{k}} b_{\dot{k}}} e^{-B_{k} \sin ^{2} \theta_{k} \lambda^{2} \sum_{r} \exp _{k r} \sin _{k r}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \exp _{\dot{k} \mathbf{r}}=\exp \left\{-\left[\left(h^{2}\right)_{r} \beta_{11}(\kappa)+\left(k^{2}\right)_{r} \beta_{22}(k)+\left(1^{2}\right)_{r} \beta_{33}(\kappa)\right.\right. \\
& \left.\left.+(2 h k)_{r} \beta_{12}(k)+(2 h l) r_{r} \beta_{13}(k)+(2 k l)_{r} \beta_{23}(k)\right]\right\}
\end{aligned}
$$

The (hk) ${ }_{r}$ are index products transformed to the equivalent position r. For atoms in general positions (hk) $r_{r} h_{r} k_{r}$, and this has been taken to be universally true for the purposes of the profile refinement program, as in the OR FLS progran ($B M_{4}$). The usual rules (Levy, 1956) can be used to determine the symmetry properties of the temperature parameter tensors $\beta_{i j}(k)$. Constraint relations between the various $\beta_{i, j}$ can be introduced by means of the parameter codewords and constraint cards ((85.2) so that these symmetry properties are retained throughout the refinement.

New expressions for the derivatives of F_{k} with respect to the various parameters can easily be obtained from the above expressions: in all cases a factor $\exp _{k x}$ multiplies Rietveld's original $\cos _{k r}$ and sin $k r$ factors, and in the case of the derivatives with respect to $\beta_{i j}(k)$, additional factors of (hk) $r_{r}=h_{r} k_{r}$ also appear inside the r summation over equivalent positions.

Apart from the magnetic parameters (Rietveld, 1969), the structural parameters are now equivalent to those used in the OR FLS program (BML), except thet it is possible to specify either $B_{i, j}$ or $\beta_{i j}$ tempereture parameters in the input data. The program converts to $\beta_{i j}$ for internal calculations, but reconm verts to $B_{i j}$ for the detailed printout of the results.
4. Examples of powder patterns analysed at Harwell

The five diffractometers used for powder work at Harwell have been described by Wedgwood (1968). We will only mention here some recent work on the PANDA machine, for which the monochromator angle can be varied between 30° and 90° giving a range of neutron wavelengths from 0.78 to 2.48 . The full width at half height at the focussing angle 2θ (approximately equal to the monochromator take-off angle) is 0.5 degrees, and 20 can be set to a precision approaching ± 0.01 degrees over the range $m 10^{\circ}$ to 117° by means of a Moire fringe system.

The neutron flux (about 7×10^{5} counts $/ \mathrm{cm}^{2} / \mathrm{sec}$ at the specimen) is such that a run can often be completed in 24 hours. Any temperature between 402 K and $1200^{\circ} \mathrm{C}$ is available at the specimen, which usually consists of 5 m 25 gm of powder in a vanadium or silica glass can.

4.7 Ferroeleatric and antiferroelectric structural transitions in perovskites

At high temperatures the perovskite $A B O_{3}$ structure is cubic, with A atoms on the corners, B atoms on the centres and 0 atoms on the centres of the faces of the cubic cell. When the temperature is lowered, certain soft vibrational modes become unstable, and the resulting atomic displacem ments (~ 0.18) lower the symmetry of the lattice, with changes of the order

of 1% in the lattice constants (e.g. Cochran and Zia, 1968). These small changes cause splitting of the cubic perovskite diffraction lines, which cannot then be fully resolved; quite complicated powder patterns result (figure 2). As well, in 'antiferroelectric' materials, the unit cell becomes a multiple of the original cell, and superlattice lines appear in the powder pattern. It would be impossible to analyse such complex patterns on the usual basis of integrated intensities. For example, more than 200 distinct reflexions contribute to the pattern for orthorhombic KNOO_{3} (figure 2a).

We have been able to analyse such patterns though, using the profile refinement program with anisotropic temperature parameters. Figure 1 is typical of the fit obtained: the agreement between calculated and observed points over the entire pattern approaches the limit imposed by purely statistical fluctuations in the number of counts observed. The atomic positions are determined by this fit to at least $\pm 0.01 \%$, the cell dimensions to $\pm 0.001 \AA$ and the cell angles to $\pm 0.02^{\circ}$. To allow comparison of the results of the profile refinement with those of single crystal work, we can calculate the quantity

$$
R_{\text {Nuclear }}=100 \sum_{k}\left[F_{k}{ }^{2}(o b s) * \frac{1}{c} F_{k}^{2}(c a l c)\right] / \sum_{k} F_{k}^{2}(o b s)
$$

using the observed intensities integrated for each reflexion at the end of the refinement. The observed counts can be divided up between overlapping reflexions according to the relative contributions of these reflexions computed from the fitted structure (Rietveld, 1969). Typical $R_{\text {Nuclear }}$ factors of 2.5 and 2.6 were obtained for the orthorhombic and rhombohedral modifications respectively of KNbO_{3}. This compares favourm ably with careful single crystal measurements for similar problems (Hewat, Rouse and Zaccai, 1972; Hewat, 1973b). The uncertainties in the values of the structural parameters are no larger for the powder results than for the single crystal work.

Other perovskites studied using the powder method include $\mathrm{BaTiO}_{3}, \mathrm{NaNaO}_{3}$, $\mathrm{KTaO}, \mathrm{SrTiO}_{3}, \mathrm{FbHPO}_{3}, \mathrm{NaTaO}_{3}, \mathrm{AgNbO}_{3}$ and AgTaO_{3}.

4.2 Hydrogen bonded entiferroelectrics and ferroelectrics

Single crystals of hydrogen bonded $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ and $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{AsO}_{4}$ break up when the antiferroelectric structurgl transition is encountered at lower temperatures. This makes single crystal work almost impossible, but has no effect on powder work. Figure 3 shows the changes observed in the powder
pattern of fully deuterated $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ when the antiferroelectric transitron occurs (Hewat, 1973c). The lattice symmetry is lowered when the hydrogen eitoms order on one or the other of the alternative sites available to them at higher temperatures, as postulated by Nagamiya (see Kanzig, 1957)。 The strong superlattice reflexions appear in the low temperature phase because $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ is an antiferroelectric, rather than a ferroelectric like $\mathrm{KH}_{2} \mathrm{PO}_{4}$. Similar results have been obtained for deuterated $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{AsO}_{4}$.

Other hydrogen bonded materials studied using the powder method include deuterated ferroelectric $\mathrm{NaH}_{3}\left(\mathrm{SeO}_{3}\right)_{2}$ and deuterated $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

4.3 Measurements of anisotropic and anharmonic vibrational amplitudes

Because extinction effects are negligible for the powder method we have used powder patterns to investigate thermal vibrations in several interesting materials.

Vibrational amplitudes, and lattice dymamical measurements in general, are of importance for the A15 structure high temperature superconductors, such as $\mathrm{Nb}_{3} \mathrm{Sn}$. This material also has a structural transition at 45 K which we are attempting to study using the porder method. Figure 4 shows the patterm obtained at room temperature for $\mathrm{Nb}_{3} \mathrm{Sn}$. A profile analysis of this pattern shows that the chains of Nb atoms vibrate with considerabiy larger amplitudes in directions perpendicular to these chains than aling them. The question of the somcalled low temperature anharmonisity of the vibrations of the Sn atoms (Hemat, 1972b) has been resolyed; further information will become available when the low temperature patterns have been analysed.

Further powder work on anharmonic vibrations has been done on materjais having the rocksalt and zineblende structures.

4.4 Other powder work at Harwell using the profile refinement program

Structural work connected with defect stidies has been completed by Cheethom and Norman (1973) on YF_{3} and BiF ${ }_{3}$. Struetural studies of magnetic materials have been started by B. Haywood, and on allay systems by A. Self. It is expected that the profile refinemant program will become increasingly important for the analysis of neutron powder patterns at Harwell.

5. Input and output format for the Fortran program

The program is in two parts which can be run separately.

1) preparation of profile data program.
2) structure refinement program.

5.1 Preparation of profile data

This program corrects the measured profile intensities Y_{i} for background. It also determines those reflexions which can theoretically contribute to the intensity $Y_{i} i . \theta$. those which are loceted within $1 \frac{1}{2}$ times their halfwidth of the position $2 \theta_{i}$.

The output, originally saved on magnetic tape, is now stored in a private or scratch disk area, to be used as the input for the refinem ment program.

5.1.1 Format of the data cards

Data cards for both programs are punched wherever possible in fields of 8.
1.

FORMAT (20A4)
TITLE . - consisting of any Holerith information, This will be used as a heading for the printer output.
2.
II.
3.
a, b, c, a, β, Y o lattice constants of the real space cell a, b, c in $A ; a_{g} \beta_{g} \gamma$ in degrees.
4.
$\lambda(1), 7(2)$
Z,
U, V, W.
FORMAT (A4)

- problem identification, any four characters including blanks.
- immatrind FORMAT (6F8)

FORMAT $(6-8)(9 F 8.4 \sqrt{14})$

- neutron wavelength in $A_{\text {s }}$ on $k_{\alpha_{1}}$, $K_{x_{1}} x_{\text {wom }} 4$
- approximate zeropoint reading of counter in 0.01 degrees 2θ.
- approximate halfwidth parameters $H^{2}=U \tan ^{2} \theta+V \tan \theta+W$ where H is the full width of a single reflexion at hasf height, in 0.01 degrees 20 . contimued on back of page 8

5. n_{B} cards
(i) $\operatorname{pos}(1) ; B / G(1)$.

- a number ($n_{B} \leqslant 50$) of cards, each
(ii) $\operatorname{pos}(2), B / G(2)$. containing a 2θ angle pos(i) in 0.01 degrees 2θ, and the beckground count $B / G(i)$ at this angle. These cards

Cand 4(continual)
$S B$ - stardard devintion in backg ound
WDT - width of buse of feak $=2 * H W *$ wot
Defoult $=1.5$
CTHM. Polvization corncitio tir moro choomate for x-moss
TMu. Absurption Factor for x-vay
IPCH - I formo print of neflections or piofile O puint all.
21. FOKMAAT ($F 8,4,2 I \gamma$)
CONA - Coefficients and indicier of first linear coustraint
LCONX function. The last term theanotant) should ber puccecclax
heons by -100.
22. Format (F8.4.458)
CONA -crefticients and indizies of first gmahriz emotmint
hCONI fruntion, The last term shoubl be pueceederl by -icos
LCOM J
Leon
JCDN
23.

Foxemat (1246)

- If IouT=2 them TITLE to appear on protile plot.
- deo nele cand ${ }^{24}$

24. Formatt (EX, WF5.0, 58)

IXCALE - Numberot counts per print charucter (120 anajeables
CMAINI - lower limit on count plottel, set less than CBACK
TMIN - beginning angle in clognees.
TSTEP - intornl between obsorntions \therefore dejuces.
CBAcK - Typical backgwound count
IDIF - number of counts purprint chamcter for di'Itenence plot.

The program punches on Unit 1 and naquines serstch files on Units 4, 8, and 9. The intermelozte tille is Unit 2 tow both porgrames.

$$
\begin{gathered}
\left(n_{B}\right) \operatorname{pos}\left(n_{B}\right), B / G\left(n_{B}\right) . \\
\vdots \\
-100
\end{gathered}
$$

6. OPTIONLAL $\leqslant 10$ cards -lo wii), -Mig hi). - 100
must be in order of increasing 2θ, and are terminated by a card containing -100. in the first field.

The background count at any other angle is obtained from these values by linear interpolation.

FORMAT (2I8)
These cards specify up to ten regions of the powder pattern, between $2 \theta=$ low (i) and $2 \theta=$ high (i) in 0.01 degrees 2θ, which are to be excluded from the refinement. N.B. low (i) and high (i) are preceded by negative signs for reasons of program control.

This set of sards, if included,
is terminated by a card containing -100 in the first field.
7.
8.
N.
$\mathrm{NH}, \mathrm{NK}, \mathrm{NL}$.
9. N cards

ICODE,
FORMAT (IB)

- number of reflexions in the reflexion list to follow.
,

FORMAT (SIB)

- denominators of the Miller indices h, k, l. These are included to eliminate the need to write nonintegral Miller indices in case of cell enlargement. The program interprets the given indices in the reflexion list as $\mathrm{h} / \mathrm{NH}_{\mathrm{s}} \mathrm{k} / \mathrm{NK}, \mathrm{l} / \mathrm{NL}$ 。

FORMAT (5I8)
$=1$ intensity (h, k, I) due solely to nuclear scattering
$=2$ intensity ($h, k, 1$) due solely to magnetic scattering
$=3$ intensity ($h, k, 1$) due to both nuclear and magnetic scattering

h,k,l,

MUT .
10.
${ }^{a}$,
Δ,
ω,

- the Miller indices (see card 7). They can be generated on cards for a given Laue group using a program written by J. B. Forsyth of the Rutherford Laboratory, Harwell. AlI reflexions which contribute to the pattern must be included.
- the multiplicity of reflexion h,k,l.

$$
\text { - counter starting angle in } 0.01 \text { degrees }
$$ 20. If less them 10 intensities ane given with augleotabsuration on per counter step size in 0.01 degrees 20 . card

- floating point
a counter finishing angle in 0.01 degrees 20.

11. $(\omega \sim a) / 10$ cards $I(\alpha), I(\alpha+\Delta) \ldots I(\alpha+1 \infty)$.

FORMAT (10I8) or (I $6, F 8,0)$

- the powder pattern counts including background, at angles annA. There are 10 counts per card.
-if $\alpha \leq 10$ then Angle $* 10$, Count

5.1.2 Printout for profile preparation program

The reflexion list is printed with the heading
NO. CODE H K L MOLT HT PORN
an ordinal number No. having been allocated to each reflexion h, k, l. The halfwidth $H M$ and position POSN are in 0.01 degree 2θ units.

The profile intensity list is printed with the heading
PORN I $+\mathrm{B} \quad \mathrm{B} \quad \mathrm{I} \quad \mathrm{W}$ NO. NO. NO.
and contains the interpolated background B and count intensity I corrected for background at each step position POSN. W $=250 / I+B+S S^{2}$ is the weight allotted to each of these counts. The ordinal numbers of all of the reflexions which contribute to this count are listed under the headings NO. If them are mon than 40 our hoping whethetionstany point this list is truncalal, and for use later in the refinement program; it appear on Unit 2

5.2 Structure refinement

The profile and structure parameters are stored in array $X_{i, j}$. With N atoms the array elements are

${ }^{x}{ }_{K}$	y_{K}	${ }^{2}$ k	B_{K}	N_{K}	Kx_{*}	Ky_{k}	${ }_{K}{ }_{\text {k }}$.	$\beta_{11}{ }^{K}$	$\beta_{22}{ }^{k}$	$\beta_{33}{ }^{\text {k }}$	$\beta_{12}{ }^{\text {k }}$	$\beta_{13}{ }^{k}$	$\beta_{2} 3^{k}$
!	$i=$	1,N											
¢	P	1/c(c)	$\begin{aligned} & 1\left(\left(c_{2}\right)\right. \\ & \& \theta^{2} \end{aligned}$	$\begin{gathered} Q \\ 1 \neq C \end{gathered}$									
U	V	W	Z	A	B	c	D	E	F				

Symbols not previously mentioned are defined in Rietveld's paper (1969).

For each of these $X_{i, j}$ a codeword $C X_{i, j}$ is needed. If this codeword is zero, the corresponding $X_{i, j}$ is held fixed throughout the refinement, but otherwise the codeword specifies the ordinal number p of the parameter $X_{i, j}$. p runs from 1 to size, where size is the dimension of the least squares matrix of parameters; every number p in this interval must be allocated to some $X_{i, j}$, but the order of allocation is unimportant.

These codewords may also be used to specify simple linear relations, such as $y=a x$, between the $X_{i j}$, since the codeword for $X_{i, j}$ is defined as

$$
C x_{i, j}=\operatorname{sign}(a) x[10 p+|a|]
$$

If x is regarded as the 8 th parameter for the refinement ($p=8$) and z the 9 th, the codewords for the atom comordinates ($x,-\frac{1}{4} x, z$) would be (81., $-80.25,91$.$) . For each increment \Delta x$ in x, an increment $-0.25 \Delta x$ would be added to y .

Since these codewords specify relations between increments, the same codewords would be used if the atom position was actually ($x,-\frac{1}{4} x+\frac{1}{2}, z$): the constant y displacement of $\frac{1}{2}$ is specified dy the initial values given for the atom comordinates, and is preserved whatever increment is added to x .

A facility for the introduction of more complex relations between the variables is also available. For example, any linear relation such as

$$
\begin{equation*}
a x_{i, j}+b x_{k, l}+c x_{m, n}+\cdots=d \tag{1}
\end{equation*}
$$

can be introduced by specifying $a, i, j ; b, k, l ; c, m, n$; etc, and d on the appropriate constraint cards. The variables $X_{i, j} j^{2} X_{k, 1}, X_{m, n}$ etc. should all have different least squares parsmeters assigned to them i.e.
$0 \neq \mathrm{CX}_{\mathrm{i}, \mathrm{j}} \neq \mathrm{CX}_{\mathrm{k}, \mathrm{I}} \neq \mathrm{C}_{\mathrm{m}, \mathrm{n}}$ stc.
For a quadratic relation such as

$$
\begin{equation*}
a X_{i, j}^{2}+b X_{k, 1} X_{K, L}+c X_{m, n} X_{M, N}=d \tag{2}
\end{equation*}
$$

the left hand side should first be differentiated, giving

$$
2 a X_{i, j} \partial X_{i, j}+b X_{k, I} \partial X_{K, L}+b X_{K, L} \partial X_{K, I}+c X_{m, n} \partial X_{M, N}+c X_{M, N} \partial X_{m, n}
$$

In this expression, all the terms for which $\partial X_{i, j}=0$ i.e. for which the codeword $C X_{i, j}=0$, are to be cancelled. Assuming $C X_{K, L}=0$, the expresm sion reduces to

$$
\begin{equation*}
2 a X_{i, j} \partial X_{i, j}+b X_{K, L} \partial X_{k, 1}+c X_{m, n} \partial X_{M, N}+c X_{M, N} \partial X_{m, n} \tag{3}
\end{equation*}
$$

The quedratic relation(2) is then introduced by specifying $2 a, i, j, i, j ;$ $\mathrm{b}, \mathrm{K}, \mathrm{L}, \mathrm{k}, \mathrm{l}$; $\mathrm{c}, \mathrm{m}, \mathrm{n}, \mathrm{M}, \mathrm{N} ; \mathrm{c}, \mathrm{M}, \mathrm{N}, \mathrm{m}, \mathrm{n}$; and α on the constraint cards.

No mixed relations of linear and quadratic terms are allowed. The maximum number of terms in (1) and (3) is 9 and the total number of linear and quadratic relations must not exceed 4 unless the dimension statements in the Fortran program are adjusted appropriately.

5.2.1 Format of data cards

1.

FORMAT (20A4)
TITLE
2.

ID,	- the same problem identifier used in programe 1. (Immanterial)
ε,	- forced termination of refinement if for all parameters, calculated shift $<\varepsilon_{x}$ estimated error.
CALC,	```= 0 when only nuclear intensities are to be calculated, i.e. if CODE = 1 for all reflexions.```
	$=1$ when the magnetic intensities are to be calculated according to the formula of Holpern and Johnson (1939).

$=2$ when the average magnetic intensities are to be calculated in a uniaxial configurational spin symmetry.
$=3$ when the average magnetic intensities are to be calculated in a cubic configurational

PH,FK,PL,
LII.

2a. $H L(5), J=1,3$
3.

CENTRE,

EQUIV,

TYPE,
FORM,

ATOM,
ROT,

- the limiting angle in 0.01 degrees 2θ below which the diffraction peaks are to be corretted for the asymmetrical vertical diver
 FORMAT ($618, F 8$)
$=1$ for non centrosymmetric space groups
$=2$ for centrosymmetric space groups
A magnetic structure is centrosymmetric when the atoms in the centre of symmetry related positions have equal magnetic vectors pointing in the same direction.
- number of equivalent positions. These should not be related by a centre of symmetry. The description of the untransformed position (x, y, z) is not included, but is generated by the program,
- number of nuclear scattering lengths, or number of X -ray scattering factors
- number of normalized magnetic scatter ing curves, must $=$ TYPE for $x-m y s$
- number of atoms.
- number of magnetic vector rotation matrices for each quivalent position. When there are magnetic atoms, ROT should always be larger than zero, even when EQUJV $:=0$. Also in this latter case, a number of ROT identity matrices are generated by the program for the intransformed (x, y, z).

	PUNCH,	$=1,2^{2} 3$ for punched output of calculated and separated observed structure factors after last cycle. $=2$ or 3 for punched output of observed and calculated profile intensities on last cycle, else $=0$.
	MATRIX,	$=$ ' for printed output of correlation matrix with all elements multiplied by 100 , else $=0$.
	CORREL,	$=1$ for punched output of covariance matrix of the comordinates of all atoms after last cycle, else $=0$.
8.	coord.	$=1$ for punched output of coordinates tape with new parameters after last cycle, else $=0$. $=2$ Atpmecandine stinlarl fourier format
	$c(1), c(2)$ Q.	- overall scale factor such that $y(c a l c)=$ c $x y$ (obs). Seale factors for $K \alpha_{1}$ and $K \alpha_{2}$ for x-nys - overall isotropic temperature parameter.
9.	$2 \times$ ATOM cards	FORMAT (AL4, 314,8F8/6F8)
(i)a	LABEL, NTYP,	- identification characters Por atom. - ordinal number of relevant scattering length, or $x-m y$ sent-riz fuction
	MTYP,	- ordinal number of magnetic scattering curve; irrevelant for x - vays
	mrot,	- ordinal number of magnetic vector rotation matrix with each equivelent position. For magnetic atoms MROT > 1 .
	x, y, z,	- fractional atomic coordinstes.
	B,	- isotropic atomic temperature parameter. This is effectively added to the orerall temperature parameter Q.
	n,	- occupation number.
		- 15 -

K_{x}, K_{y}, K_{z}. -magnetic vector components in the directions x, y, z. These are only needed when MROT $\geqslant 1$.
(i)b

$$
\begin{aligned}
& \beta_{11}, \beta_{22}, \beta_{33}, \\
& \beta_{12}, \beta_{13}, \beta_{23} .
\end{aligned}
$$

- if $\operatorname{DIR}=+1$ (see card 11) these are the anisotropic β temperature parameters defined in 83 .

OR(i) 0
B_{11}, B_{22}, B_{33}, - if DIF $=-1$, anisotropic $B_{i j}$ temperature para$\mathrm{B}_{12}, \mathrm{~B}_{13}, \mathrm{~B}_{23}$.
10.

FORMAT (4F8)
U,V,W, - halfwidth parameters as in program 1.
2. - zeropoint position of counter in 0.01
degrees 2θ.
11.

FORMAT (I8)
DIR. $\quad=+1$ when the cell constants on the following card are given as A, B, C, D, E, F.
$=-1$ when the real cell constants $a, b, c, \alpha, \beta, \gamma$ are given.
12.

$$
\begin{aligned}
& \text { A,B,C,D,E,R. } \quad-\text { cell constants according to } \\
& 1 / \mathrm{d}^{2}=\mathrm{Ah}^{2}+\mathrm{Bk}
\end{aligned}
$$

OR 12.

$$
\begin{array}{ll}
a, b, c . & - \text { cell dimensions in } \AA . \\
a, \beta, \gamma . & - \text { cell angles in degrees. }
\end{array}
$$

G, - preferred orientation parameter.
P. - asymmetry parameter.
14.

FORMAT (IB)
SIZE. - total number of least squares parameters = size of normal matrix.
15. $2 \times$ ATOM cards FORMAT ($8 \mathrm{~F} 8 / 6 \mathrm{~F} 8$)
(i) a $C x, C y, C z$,

- codewords for the fractional atomic com ordinates.

CB, - codeword for the isotropic temperature
cm parameter for the occupation number.
$\mathrm{OK}_{\mathrm{x}}, \mathrm{CK}_{\mathrm{y}}, \mathrm{CK}_{z}$.

- codewords for the magnetic vector components (if MROT $\geqslant 1$)
(i)b $\mathrm{C} \beta_{11}, C \beta_{22}, C \beta_{33}$,
- codewords for the anisotropic $\beta_{i, j}$
$C \beta_{12}, C \beta_{13}, C \beta_{23}$. temperature parameters.
This pair of cards is needed for each of the ATOM atoms.

16.

Cc (1), $\mathrm{Ce}(2)$ - codewords for the overall scale factors.
CQ. - codeword for the overall isotropic temperature factor.
17.

FORMAT (4F8)
CU, CV, CW, - codeword for the halfwidth parameters
CZ. - codeword for the counter zeropoint.
18.

FORMAT (6F8)
$C A, C B, C C$, codewords for the cell constants
$C D, C E, C F$.
19.

FORMAT (2F8)
CG, - codeword for the preferred orientation parameter
CP. $\quad-$ codeword for the asymmetry parameter
20.

NC,

- number of linear constraint functions.

NQC .

- number of quadratic constraint functions.

21. see back of pg 9 for nest ot in put.

5.2.2 Printout of structure refinement program

After each cycle, there is printed for each parameter, including the $\beta_{i j}$ factors
(i) its new value (X),
(ii) the shift (DX) applied to the old value, being the calculated shif't multiplied by the relavant relaxation factor,
(iii) its estimated standard deviation (SX) according to the formula:

$$
\sigma(X)=|a| \sqrt{M_{p p}^{-1} \cdot \sum W\{c y(o b s)-y(c a l c)\}^{2} /(N-P+C)},
$$

where $M_{p p}^{-1}$ is the diagonal element of the inverted normal matrix corresponding to the p th parameter, " a " the codeword coef"ficient ($\$ 5.2$), N the number of statistically independent observations, P the number of least squares parameters, and C the number of constraint functions.

The cell constants are printed in the order: A, B, C, D, E, F. While the refinement is always on the components of the magnetic vector, the magnetic moments (M) and their corresponding standard deviations (SM) are also calculated from these components after each refinement cycle.

The three entries after R-FACTORS correspond with:

$$
\begin{aligned}
& R_{1}=100 \sum\left|I(o b s)-\frac{1}{c} I(c a l c)\right| / \sum I(o b s) \\
& R_{2}=100 \sum\left|y(o b s)-\frac{1}{c} y(c a l c)\right| / \sum|y(o b s)| \\
& R_{3}=100 \sqrt{\sum W\left\{y(o b s)-\frac{1}{c} y(c a l c)\right\}^{2} / \sum W\{y(o b s)\}^{2}} \\
& \text { The EXPECTED R factor }=100 \sqrt{(N-P+C) / \sum W\{y(o b s)\}^{2}} \\
& R(\text { NUCLEAR })=100 \sum\left|\operatorname{Inuc}(o b s)-\frac{1}{c} \operatorname{Inuc}(c a l c)\right| / \sum \operatorname{Inuc}(o b s) . \\
& R(\text { MAGNETIC })=100 \sum\left|\operatorname{Imag}(o b s)-\frac{1}{c} \operatorname{Imag}(c a l c)\right| / \sum \operatorname{Imag}(o b s) .
\end{aligned}
$$

$\mathrm{N}-\mathrm{P}+\mathrm{C}=$ the number of degrees of freedom, where N is the number of statistically independent observations y, P the number of least squares parameters, and C the number of constraint functions. The totals at the end of the printout have the following meaning:

$$
\begin{array}{ll}
\text { SUMYDIF } & \left.=\left.\sum\right|_{y}(o b s)-\frac{1}{c} y(c a l c) \right\rvert\, \\
\text { SUMYOBS } & =\left.\sum\right|_{y}(o b s) \mid
\end{array}
$$

SUMYCALC $=\frac{1}{c} \sum_{y}$ (calc)
SUMMYOBSSQ $=\sum W\{y(o b s)\}^{2}$
SUMIDIF $\quad=\Sigma\left|I(o b s)-\frac{1}{c} I(c a l c)\right|$
SUMIOBS $=\sum I$ (obs)
SUMNUCDIF $=\sum \mid$ Inuc (obs) $\left.-\frac{1}{c} \operatorname{Inuc}(\mathrm{calc}) \right\rvert\,$
SUMNUCOBS $=\Sigma$ Inuc(obs)
SUMMAGDIF $=\Sigma \mid \operatorname{Imag}$ (obs) $\left.-\frac{1}{c} \operatorname{Imag}(c a l c) \right\rvert\,$
SUMMAGOBS $=\Sigma \operatorname{Imag}$ (obs)
RESIDUAL $=\sum$ WF y (obs $\left.)-\frac{1}{c} y(c a l c)\right]^{2} /(N-P+C)$
SKEWNESS $=$ determinantal value of the normal matrix with normalized column vectors. When all vectors are orthogonal, SKEWNESS $=1$.
On the last cycle, a list of y (obs) and $\frac{1}{c}$ (calc) is printed if requested, preceded by the starting and finishing angles and step size in 0.01 degrees 20 .

Next a list of separated integrated intensities is printed if requested, under the heading

H K L POS INUC IMAG ITOT IOBS DFF ESD
where POS is the position (in 0.01 degrees 2θ) of reflexion (H, K, L)

$$
\begin{aligned}
& \text { INUC }=\frac{1}{c} \text { Inuc (calc) } \\
& \text { IMAG }=\frac{1}{c} \text { Imag (calc) } \\
& \text { ITOT }=\frac{1}{c} I \text { (calc) } \\
& \text { IOBS }=I \text { (obs) } \\
& \text { DIF }=I O B S-I T O T \\
& \text { ESD }=\sigma(\text { IOBS }) .
\end{aligned}
$$

The denominators $N H, N K, N$ of the integers H, K, L are printed immediately below the heading $\mathrm{K}, \mathrm{K}, \mathrm{L}$.
5.2.3 Punched output of refinement program - This has been changel
The possible output cards, with their formats are:

(4) "COORDINATES COVARIANCES" (If CORREL = 1)

The covariance matrix is punched row by row (8 E 10.4). The rows (and columns) of this ($3 \times \mathrm{ATOM}, 3 \times$ ATOM) matrix refer to the atom comordinates in the order

$$
x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2} \ldots x_{A T O M}, y_{A T O M}, z_{A T O M} .
$$

6. Example of the use of the program

To illustrate all of the features of the modified program, the data for $\mathrm{MnTa}_{4} \mathrm{~S}_{8}$ at 4.2 K , given by Rietveld (1969b), has been adapted for use as an example. The ln atom has a magnetic moment, so that in the structure refinem ment the program has to take account of the magnetic scattering contribution as well as nuclear scattering. At 4.2 K these magnetic moments are ferrom magnetically ordered in the basal plane, but their direction cannot be determined from the powder data; Rietveld assumed it to be along the xaxis.

6.1 General description of the test problem

The space group is hexagonal $\mathrm{PG}_{3} / \mathrm{mmc}$ (No.194), with atoms in the special positions

$$
\begin{array}{r}
\mathrm{Mn} \text { at } 0,0,0 \\
\mathrm{Ta}_{1} \text { at } 0,0, \frac{1}{4} \\
\mathrm{Ta}_{2} \text { at } \mathrm{x}, 2 \mathrm{x}, \frac{1}{4} \\
\left.\mathrm{~S}_{1} \text { at } \frac{1}{3}, 2 \mathrm{a}\right) \\
\left.\mathrm{S}_{2} \text { at } \mathrm{z}\right) \\
\mathrm{x}, 2 \mathrm{~h}, \mathrm{z}) \\
\left(4 \mathrm{f}^{\prime}\right) \\
(12 \mathrm{k})
\end{array}
$$

These positions can be described by the 12 centrosymetric positions of (12k).

$$
\begin{array}{lllll}
\mathrm{x}, \mathrm{y}, \mathrm{z} ; & \overline{\mathrm{y}}, \mathrm{x}-\mathrm{y}, \mathrm{z} ; & \mathrm{y}-\mathrm{x}, \overline{\mathrm{x}}, \mathrm{z} ; & \overrightarrow{\mathrm{x}}, \vec{y}, \frac{1}{2}+\mathrm{z} ; & \mathrm{y}, \mathrm{y}-\mathrm{x}, \frac{1}{2}+\mathrm{z} ; \\
\bar{x}, \bar{y}, \bar{z} ; & \mathrm{y}-\mathrm{y}, \mathrm{x}, \frac{1}{2}+\mathrm{z} ; \mathrm{x}, \vec{z} ; & \mathrm{x}-\mathrm{y}, \mathrm{x}, \overline{\mathrm{z}} ; & \mathrm{x}, \mathrm{y}, \frac{1}{2}-\mathrm{z} ; & \overline{\mathrm{y}}, \mathrm{x}-\mathrm{y}, \frac{1}{2}-\mathrm{z} ; \\
\mathrm{y}-\mathrm{x}, \overline{\mathrm{x}}, \frac{1}{2}-\mathrm{z}
\end{array}
$$

with $y=2 x$. The lattice dimensions and angles are

$$
\begin{array}{ll}
a=b=6.60529 \AA & c=12.44817 \AA \\
a=\beta=90^{\circ} & \gamma=120^{\circ}
\end{array}
$$

Levy (1956) has derived relationships between the $\beta_{i j}$ factors for these special positions of this space group, using the symmetry transformation $(y-x, y, z)$ which leaves ($x, 2 x, z$) unchanged. He obtains $\beta_{12}=\frac{1}{2} \beta_{22}$ and $\beta_{23}=\frac{1}{2} \beta_{13}$. This relation also holds for the $B_{i, j}$ factors, since

$$
\begin{equation*}
\beta_{i j}=a_{i}^{* \varepsilon_{i}}{ }^{*} B_{i j} / 4 \tag{1}
\end{equation*}
$$

Since $\left(y-x, y, \frac{1}{2}-2\right)$ leaves $\left(x, 2 x, \frac{1}{4}\right)$ unchanged, this transformation can be used to show that $\beta_{23}\left(\mathrm{Ta}_{2}\right)=0$. Similarly (\bar{x}, \bar{y}, z) yields $\beta_{22}=\beta_{11}$ for the Mn , T_{1} and S_{1} atoms. Thus there are four independent $\beta_{i j}$ factors for S_{2} three for $T a_{2}$ and two for each of the $M n, T a_{1}$ and S_{1} atoms. The correct choice of codewords for these parameters will ensure that these symmetry relations are retained throughout any refinement of the temperature factors.

Initial values for the $B_{i j}$ factors can be obtained from the isotropic B factors in terms of the angles $\alpha^{*}, \beta^{*}, \gamma^{*}$ of the reciprocal cell;

$$
\begin{align*}
& B_{11}=B \\
& B_{12}=B \cos \gamma^{*} \text { etc. } \tag{2}
\end{align*}
$$

These starting values automatically satisfy the symmetry relations for the $\beta_{i j}$ since for example $a^{*}=b^{*}$ and $\cos \gamma^{*}=\cos 60=\frac{1}{2}$ so that $\beta_{12}=\frac{1}{2} \beta_{22}$ eccording to (1) and (2).

To limit the amount of output, only a short section of the $\mathrm{MnTa}_{4} \mathrm{~S}_{8}$ powder pattern, between $2 \theta=22.69^{\circ}$ and $2 \theta=75.59^{\circ}$ has been used, sampling Rietveld's data at intervals of $0.05^{\circ} 2 \theta$ by linear interpolation. This is insufficient data to obtain meaningful results on varying all parameters simultaneously. The full scan is especially needed to determine the B factors, as is indicated by the relatively large standard deviations obtained for $\mathrm{B}_{11}\left(\mathrm{Ta}_{1}\right)$ and $\mathrm{B}_{12}\left(\mathrm{Ta}_{2}\right)$, which have been refined merely to illustrate the use of the parameter codewords.

All of the constrairt functions consist of simple linear relations between two perameters i.e.

$$
\begin{aligned}
& \mathrm{y}\left(\mathrm{Ta} a_{2}\right)=2 \mathrm{x}\left(\mathrm{Ta}_{2}\right) \\
& \mathrm{y}\left(\mathrm{~S}_{2}\right)=2 \mathrm{x}\left(\mathrm{~S}_{2}\right) \\
& \beta_{22}\left(\mathrm{Mn}, \mathrm{Ta} a_{1}\right)=\beta_{11}\left(\mathrm{Mn}, \mathrm{Ta} a_{1}\right) \\
& \beta_{12}(\kappa)=\frac{1}{2} \beta_{22}(k) k=\text { all atoms } \\
& \beta_{13}\left(\mathrm{Mn}, \mathrm{Ta}, T a_{2}\right)=\beta_{23}\left(\mathrm{Mn}, \mathrm{Ta}, T a_{2}\right)=0 \\
& \beta_{23}\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}\right)=\frac{1}{2} \beta_{13}\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}\right) \\
& A=\mathrm{B}=\mathrm{F} \text { (hexagonal symmetry) }
\end{aligned}
$$

These relations can therefore be specified by means of the codewords alone. However, to illustrate the use of the constraint functions, the relation $A=B=F$ has been introduced by means of two linear functions $A-B=0$ and $B-F=0$.

Only two cyeles of refinement have been requested, so that the best possible fit has not been achleved although the refinement is converging.

Acknowledgements

We are indebted to Dr. H. M. Rietveld of the Reactor Centrum Nederland (Petten) for supplying a acpy of his original' Profile Refinement Progran, together with a copy of $\mathrm{RCN}-104$ (Rietveld 1969b), on which the latter part of this report is based.

We thank Dr. B. T. M. Willis for constructive criticism and encouragement, and Mr. W. Futcher for assistance with the collection of the powder data.

References

Busing, W. R., Martin, K. O. and Levy, H. A. (1962) Oak Ridge Technical Manual TM-305.

Cheetham, A. and Norman, N. (1973), to be published.
Cochran, W. and Zia, A. (1968) Phys. Stat. Solidi 25, 273.
Hewst, A. W. (1972a) Phys. Stat. Solidi (b) 53, K33.
(1972b) Phys. Letters 39A, 249.
(1973a) J. Physics C., to be published.
(1973b) J. Physics C., 6, April-May.
(1973c) Ferroelectrics, to be published.
Hewat, A. W., Rouse, K. D. and Zaccai, G. (1972) Ferroelectrics 4, i53. Kanzig, W. (1957) Solid State Physics, Ed, Sejtz and Turnbull, 4.0

Levy, H. A. (1956) Acta Cryst. 29679.
Rietveld, H. M. (1967) Acte Cryst. 22. 151.
(1969) J. Appl. Cryst, 2, 65.
(1969b) Reactor Centrum Nederland Report RCN-104.
Wedgwood, F. A. (1968) UKAEA Research Group Report R-5802.

Distribution
A. W. Hemat ABRF
D.H.C.Harris AERE
6.2 Duta rards for piotile preporitiun

[^0]: Materials Physios Division, UKAFA Research Group, Atomic Energy Research Establishment, HARWELL

